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Preface

Over the years, Combinatorial Analysis has always been a popular
course among our undergraduate students. The basic principles and tech-
niques taught in the course have found more and more applications in other
fields, especially in computer science and opérational research. Problems
in Combinatorics are not only challenging for researchers, but also appear
. very frequently in various mathematical competitions, particularly the In-
ternational Mathematical Olympiad (IMO). Both the authors have been
involved in the teaching of the subject as well as in the training of the Sin-
gapore International Mathematical Olympiad Teams for many years. All
along, we have been longing for a book that is suitable for our purposes.
Hence, in writing this book, we have two main objectives in mind: (1) it
could be used as a text-book for undergraduate courses, and (2) it could be
used for the training of our International Mathematical Olympiad Teams.
To achieve these objectives, we have tried to present the material very ex-
plicitly so that students with some mathematical maturity will find it very
easy to read. We also find that students often neglect some of the basic
principles in combinatorics, such as the Addition Principle, the Multiplica-
tion Principle, the Principle of Complementation, the Injection Principle,
and the Bijection Principle, perhaps due to their rather unsophisticated
appearances. In this book, we shall lay special emphasis on the importance
of these principles, together with others, such as the Principle of Inclusion
and Exclusion and the Pigeonhole Principle. By providing a plethora of
carefully chosen examples, we hope that the applications of these principles
as well as the techniques of generating functions and recurrence relations
would be much more appreciated by the reader. We have also included a
wide range of examples and exercises with various degrees of difficulty at the
end of each chapter. All in all, we have about 490 problems, which include
combinatorial problems taken from mathematical competitions such as the
IMO, the William Lowell Putnam Mathematical Competition, the Amer-
ican Invitational Mathematics Examination, the Singapore Mathematical
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vi Preface

Olympiad, the Asian Pacific Mathematics Olympiad, the USA Mathemat-
ical Olympiad and other Mathematical Olympiads from various nations.
Some of the problems are specially drawn from sources, such as the Amer-
ican Mathematical Monthly, Crux Mathematicorum, the College Mathe-
matics Journal and the Mathematical Magazine. We shall like to express
here our gratitude to all the above publications and organizations asso-
ciated with the various mathematical competitions for kindly allowing us
to include these problems as exercises. The sources of these problems are
clearly indicated at the end of each respective problem, so that the inter-
ested reader may consult the relevant literature for further readings. We
also made an effort to be sure that the results included in here are up-to-
date and to provide the reader with a good list of references at the end of
each chapter and also at the end of the book so that the reader may pursue -
a topic further to get to the frontier of the subject.

To make reading a little easier and pleasant, a mark g is placed at
the end of a proof, or an example, or a solution to indicate completion.
The numberings of the sections, identities, problems, figures, and tables
are split into parts separated by decimal points. For instance, Problem 3.5
means the Problem 5 in Exercise 3, Section 4.2 means the second section
of Chapter 4, Figure 2.3.1 means the first figure in the third section of
Chafitsr 2, etc.. There are two kinds of references in the book. References
indicated by letters in square-brackets, such as [K] or [Ro], are articles that
can be'found at the end of the corresponding chapter, whereas, references
indicated by numbers in square-brackets, such as [3], are books that can be
found in the Bibliography at the end of the book.

We wish to express our special thanks to Chan Onn for very patiently
and carefully reading through the first draft of the book and for his many
invalui'able suggestions which certainly enhanced the contents as well as the
presentation of the book. We wish to thank also our students Chan Hock
Peng, Goh Beng Huay, Ng Wee Leng, Ngan Ngiap Teng, Tan Ban Pin and
Teo Chung Piaw for reading through the many problems in the exercises.
Last but not least, we are grateful to the National University of Singapore
for granting us local leave during which this book was written.

Chen, Chuan-Chong and Koh, Khee-Meng



Notation and Abbreviation

{1,2,3,...}, (p.5)

{0,1,2,3,...}, (p.104)

{1,2,3,...,k}, (p.62)‘

{0,1,2,3,...,k}, (p.91)
{...,-2,-1,0,1,2,3,.. .}, (p.3)

the set of real numbers, (p.187)

Addition Principle, (p.1)

Bijection Principle, (p.27)
Complementation Principle, (p.16)
Injection Principle, (p.27)

Multiplication Principle, (p.4)
Pigeonhole Principle, (p.120)
Generalized Pigeonhole Principle, (p.133)
Principle of Inclusion and Exclusion, (p.146)

Generalized Principle of Inclusion and Exclusion,

(p.150)
Reflection Principle, (p.91)

Left hand side, (p.192)
Right hand side, (p.151)
if and only if, (p.79)

if and only if, (p.95)
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Notation and Abbreviation

a divides b, (p.94)
a does not divide b, (p.94)
the largest integer less than or equal to z (p.94)

the smallest integer greater than or equal to z

(p-124)
a is congruent to b modulo m, i.e. m|(a — b) (p.94)

highest common factor, (p.113)

Lowest common multiple, (p.147)

the number of elements in the finite set .S, (p.2)
Stirling number of the first kind

the number of ways to arrange r distinct objects
around n identical circles such that each circle has
at least one object, (p.25)

Stirling number of the second kind

the number of ways of distributing r distinct objects

into n identical boxes such that no box is empty,

(p-47)

the rth Bell number = ZS(r, n), (p.50)

n=1
the number of r-element subsets of an n-element set

n!

ri(n —r)V’ (-17)

the number of r-permutations of n distinct objects

(nz—'r), (®.7)
(r + 1: —'1)’ (037)

7!

(p-34)
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Notation and Abbreviation ix

the number of r-circular permutations of n distinct
objects

L

> (p.13)

the number of derangements of N,,, (p.160)

the number of r-permutations of N,, that have ex-
actly k fixed points, (p.160)

the power set of X, (p.28)

the Euler ¢-function, (p.160)

the smallest natural number “n” such that for any
colouring of the edges of an n-clique by 2 colours:
blue or red (one colour for each edge), there exists

either a “blue p-clique” or a “red ¢-clique”, (p.132)
the smallest natural number “n” such that for any

colouring of the edges of an n-clique by k colours:
colour 1, colour 2, ..., colour k, there exist a colour
i (i=1,2,..., k) and a p;-clique in the resulting con-
figuration such that all edges in the p;-clique are

coloured by colour ¢, (p.136)
n!
(p.96)

the number of different partitions of n, (p.196)

nylng!- . npyt’

Mathematical Olympiad
International Mathematical Olympiad
Asian Pacific Mathematics Olympiad

American Invitational Mathematics Examination
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Chapter 1

Permutations and Combinations

1.1. Two Basic Counting Principles

In our everyday lives, we often need to enumerate “events” such as, the
arrangement of objects in a certain way, the partition of things under a
certain condition, the distribution of items according to a certain specifi-
cation, and so on. For instance, we may come across counting problems of
the following types:

“How many ways are there to arrange 5 boys and 3 girls in a row so
that no two girls are adjacent?”

“How many ways are there to divide a group of 10 people into three
groups consisting of 4, 3 and 2 people respectively, with 1 person rejected?”

These are two very simple examples of counting problems related to
what we call “permutations” and “combinations”. Before we introduce in
the next three sections what permutations and combinations are, we state
in' this section two principles that are fundamental in all kinds of counting
problems.

The Addition Principle (AP) Assume that there are

ny ways for the event Ej; to occur,
ng ways for the event FE,; to occur,

n; ways for the event Ej; to occur,

where k£ > 1. If these ways for the different events to occur are pair-
wise disjoint, then the number of ways for at least one of the events
E\,E,;,...,or Ex tooccurisny +na+---+np = Zf=1 n;.




2 Section 1.1. Two Basic Counting Principles

Example 1.1.1. One can reach city Q from city P by sea, air and
road. Suppose that there are 2 ways by sea, 3 ways by air and 2 ways by
road (see Figure 1.1.1). Then by (AP), the total number of ways from P
to Q by sea, airorroadis2+3+2=17. g

Figure 1.1.1.

An equivalent form of (AP), using set-theoretic terminology, is given
below.

Let Ay, Ay, ..., Ay be any k finite sets, where k£ > 1. If the given
sets are pairwise disjoint, i.e., A;NA; =0 fori,j=1,2,..,k, i#j,
then

k

U

i=1

k
=|A1UA U U] =) Al

i=1

Example 1.1.2. Find the number of ordered pairs (z,y) of integers
such that z2 + y2 < 5.
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Solution. We may divide the problem into 6 disjoint cases: 2%+ y% =
0,1,...,5. Thus fori =0,1,...,5, let
Si={(z9) |2,y €2, 2*+y*=i}.

It can be checked that

So = {(0,0)},

S = {(1’0)’ (—1’0)’ (O! 1)’(0’—1)}7

Sy = {(1’ 1)’ (1) _1)’ (_1’ l)’ (—1) —1)}’

33 = @,

Sa+ ={(0,2),(0,-2),(2,0),(-2,0)}, and

Ss = {(1)2): (1) _2)’ (2) 1)’ (2’ _1)’ (—1’ 2)’ (_1) _2)’ (_2) 1)’ (—2! —1)}'
Thus by (AP), the desired number of ordered pairs is

5
DISil=1+4+4+0+4+8=21 u
i=0
Remarks. 1) In the above example, one can find out the answer “21”
simply by listing all the required ordered pairs (z,y). The above method,
however, provides us with a systematical way to obtain the answer.
2) One may also divide the above problem into disjoint cases: z% =
0,1,...,5, find out the number of required ordered pairs in each case, and
obtain the desired answer by applying (AP).

The Multiplication Principle (MP) Assume that an event E
can be decomposed into r ordered events Ey, Es,...,E,, and that

there are
n; ways for the event E; to occur,

ny ways for the event FE; to occur,
n, ways for the event E, to occur.

Then the total number of ways for the event E to occur is given by:

r
nlxnzx-uxn,:Hni.
i=1
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Example 1.1.3. To reach city D from city A, one has to pass through
city B and then city C as shown in Figure 1.1.2.

A BgC D

Figure 1.1.2.

If there are 2 ways to travel from A to B, 5 ways from B to C, and 3
ways from C to D, then by (MP), the number of ways from A to D via B
and Cis given by 2x 5x3=30. g

An equivalent form of (MP) using set-theoretic terminology, is stated
below.

Let
.
[T4i=41x 42 x - x Ay = {(a1,02,..,0,) | @i € Ai,i=1,2,...,7}
i=1

denote the cartesian product of the finite sets Aj, As, ..., Ar. Then

r
14
i=1

.
= |A1l x |A2| x -+ x |4 = [T 14l-

i=1

A sequence of numbers ajaz...a, is called a k-ary sequence, where
n,k € N, if a; € {0,1,..,k — 1} for each ¢ = 1,2,...,n. The length
of the sequence ajas...a, is defined to be n, which is the number of
terms contained in the sequence. At times, such a sequence may be
denoted by (ai1,az,...,an). A k-ary sequence is also called a binary,
ternary, or quaternary sequence when k = 2,3 or 4, respectively. Thus,
{000, 001,010,100,011,101,110,111} is the set of all 8(= 23) binary se-
quences of length 3. For given k,n € N, how many different k-ary sequences
of length n can we form? This will be discussed in the following example.
You will find the result useful later on.
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Example 1.1.4. To form a k-ary sequence ajas...a, of length n, we
first select an a; from the set B = {0,1,...,k — 1}; then an a; from the
same set B; and so on until finally an a, again from B. Since there are k
choices in each step, the number of distinct k-ary sequences of length n is,
by MP), kxkx---xk=k". g

\_\:_/

Example 1.1.5. Find the number of positive divisors of 600, inclusive

of 1 and 600 itself.

Solution. We first note that the number ‘600’ has a unique prime
factorization, namely, 600 = 23 x 3! x 52. It thus follows that a positive
integer m is a divisor of 600 if and only if m is of the form m = 2% x 3* x 5¢,
where a,b,c € Zsuchthat 0 <a <3,0<b<1and0 < ¢ < 2. Accordingly,
the number of positive divisors of ‘600’ is the number of ways to form the
triples (a, b, c) where a € {0,1,2,3}, b € {0,1} and ¢ € {0,1,2}, which by
(MP),isequal to 4 x 2x 3 =24. g

Remark. By applying (MP) in a similar way, one obtains the following
general result.

If a natural number n has as its prime factorization,

— ok k k
n_p11p27 ...pr"

where the p;’s are distinct primes and the k;’s are p(ésit,ive integers, then
the number of positive divisors of n is given by [i-, (ki + 1).

In the above examples, we have seen how (AP) and (MP) were sepa-
rately used to solve some counting problems. Very often, solving a more
complicated problem may require a ‘joint’ application of both (AP) and
(MP). To illustrate this, we give the following example.

Example 1.1.6. Let X = {1,2,..,,100} and let
S ={(a,b,c) | a,b,c€ X,a <band a < c}.

Find |S|.
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Solution. The problem may be divided into disjoint cases by consid-
eringa=1,2,...,99.

Fora =k € {1,2,...,99}, the number of choices for b is 100 — k¥ and that
for c is also 100 — k. Thus the number of required ordered triples (k,b,c)
is (100 — k)2, by (MP). Since k takes on the values 1,2, ...,99, by applying
(AP), we have

|S| =992 +98% + .- 4 12.

Using the formula ";_, k% = in(n +1)(2n + 1), we finally obtain
15| = % x 99 x 100 x 199 = 328350. g

As mathematical statements, both (AP) and (MP) are really ‘trivial’.
This could be a reason why they are very often neglected by students. Ac-
tually, they are very fundamental in solving counting problems. As we shall
witness in this book, a given counting problem, no matter how complicated
it is, can always be ‘decomposed’ into some simpler ‘sub-problems’ that in
turn can be counted by using (AP) and/or (MP).

1.2. Permutations

At the beginning of Section 1.1, we mentioned the following problem: “How
many ways are there to arrange 5 boys and 3 girls in a row so that no two
girls are adjacent?” This is a typical example of a more general problem of
arranging some distinct objects subject to certain additional conditions.

Let A = {ay,ay, ...,a,} be a given set of n distinct objects. For 0 < r <
n, an r-permutation of A is a way of arranging any r of the objects of A in
arow. When r = n, an n-permutation of A is simply called a permutation

of A.

Example 1.2.1. Let A = {a,b,c,d}. All the 3-permutations of A are

shown below:
abe, acb, bac, bca, cab, -cba,

abd, adb, bad, bda, dab, dba,
acd, ade, cad, cda, dac, dca,
bed, bde, cbd, cdb, dbe, dcb.

There are altogether 24 in number. g
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Let P" denote the number of r-permutations of A. Thus P§ = 24 as
shown in Example 1.2.1. In what follows, we shall derive a formula for P
by applying (MP).

An r-permutation of A can be formed in r steps, as described below:
First, we choose an object from A and put it in the first position (see
Figure 1.2.1). Next we choose an object from the remaining ones in A and
put it in the second position. We proceed on until the rth-step in which we
choose an object from the remaining (n — r + 1) elements in A and put it
in the rth-position.

1st 2nd 3rd (r-1)th rth

Figure 1.2.1

There are n choices in step 1, (n — 1) choices in step 2, ..., n — (r — 1)
choices in step r. Thus by (MP),

Pl=n(n-1)(n—-2)---(n—r+1). (1.2.1)

If we use the factorial notation: n! = n(n —1)---2-1, then

n!

Pr:(n——T)!'

(1.2.2)

Remark. By convention, 0! = 1. Note that P} =1 and P} = n!.

Example 1.2.2. Let E = {a,b,c,...,z,y, 2z} be the set of the 26 En-
glish alphabets. Find the number of 5-letter words that can be formed from
E such that the first and last letters are distinct vowels and the remaining

three are distinct consonants.
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vowels

N

¥ ¥

consonants

Figure 1.2.2.

Solution. There are 5 vowels and 21 consonants in E. A required
5-letter word can be formed in the following way.

Step 1. Choose a 2-permutation of {a,e,1i,0,u} and then put the first
vowel in the 1** position and the second vowel in the 5'* position (see
Figure 1.2.2).

Step 2. Choose a 3-permutation of E\{a,e, ,0,u} and put the 1st, 2nd
and 3rd consonants of the permutation in the 2nd, 3rd and 4th positions
respectively (see Figure 1.2.2).

There are P§ choices in Step 1 and P2! choices in Step 2. Thus by
(MP), the number of such 5-letter words is given by

Py x P} = (5 x 4) x (21 x 20 x 19) = 159600. g

Example 1.2.3. There are 7 boys and 3 girls in a gathering. In how
many ways can they be arranged in a row so that
(i) the 3 girls form a single block (i.e. there is no boy between any two of
the girls)?
(ii) the two end-positions are occupied by boys and no girls are adjacent?
Solution. (i) Since the 3 girls must be together, we can treat them
as a single entity. The number of ways to arrange 7 boys together with this

entity is (7 + 1)!. As the girls can permute among themselves within the
entity in 3! ways, the desired number of ways is, by (MP),

8! x 3.
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(i) We first consider the arrangements of boys and then those of girls.
There are 7! ways to arrange the boys. Fix an arbitrary one of the ar-
rangements. Since the end-positions are occupied by boys, there are only 6
spaces available for the 3 girls G1,G> and Gs.

Positions occupied by boys

LR

Available positions for girls

G has 6 choices. Since no two girls are adjacent, G, has 5 choices and G3
has 4. Thus by (MP), the number of such arrangements is

Tx6x5x4. g

Remark. Example 1.2.3 can also be solved by considering the ar-
rangements for the girls first. This will be discussed in Example 1.7.2.

Example 1.2.4. Between 20000 and 70000, find the number of even
integers in which no digit is repeated.

Solution. Let abede be a required even integer. As shown in the
following diagram, the 1st digit a can be chosen from {2,3,4,5,6} and the
5th digit e can be chosen from {0, 2,4, 6, 8}.

Ist 2nd 3rd 4th 5th

b c d e
?

{2,3,4,5,6} {0,2,4,6,8}

b R

—

Since {2,3,4,5,6} N {0,2,4,6,8} = {2,4,6}, we divide the problem into 2
disjoint cases:
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Case 1. a € {2,4,6}.
In this case, a has 3 choices, e then has 4(= 5 — 1) choices, and bcd has
P3(1°_2) = P$ choices. By (MP), there are

3 x 4 x P§ = 4032

such even numbers.
Case 2. a € {3,5}.
In this case, a has 2 choices, € has 5 choices and again bcd has P§ choices.
By (MP), there are
2x 5 x P8 = 3360

such even numbers.

Now, by (AP), the total number of required even numbers is 4032 +
3360 = 7392. g

Example 1.2.5. Let S be the set of natural numbers whose digits are
chosen from {1, 3,5, 7} such that no digits are repeated. Find

@) 1Sl;
(i) X n.

nes

Solution (i) We divide S into 4 disjoint subsets consisting of:

(1) 1-digit numbers: 1,3,5,7;

(2) 2-digit numbers: 13,15,...;

(3) 3-digit numbers: 135,137,..;

(4) 4-digit numbers: 1357, 1375,.. ;
and find |S| by applying (AP). Thus for ¢ = 1,2,3,4, let S; denote the
set of i-digit natural numbers formed by 1,3,5,7 with no repetition. Then
S=S51US;US3U S, and by (AP),

4
IS|=>"ISi| = Pt + P} + P§ + P}
=1

=44+12+ 24+ 24 = 64.

(ii) Let a = Y n. It is tedious to determine a by summing up all the
nes
64 numbers in S. Instead, we use the following method.
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Let a; denote the sum of unit-digits of the numbers in S; ay that of
ten-digits of the numbers in S; ag that of hundred-digits of the numbers in
S; and a4 that of thousand-digits of the numbers in S. Then

a = aj + 10az + 100as + 1000ay4.
We first count a;. Clearly, the sum of unit-digits of the numbers in 53
is
1+3+5+7=16.
In S, there are P2 numbers whose unit-digits are, respectively, 1, 3, 5 and
7. Thus the sum of the unit-digits of the number is S, is
PPx(14+3+5+7) =3x16=48.

In S3, there are P numbers whose unit-digits are, respectively, 1, 3, 5 and
7. Thus the sum of unit-digits of the numbers in S3 is

P x(14+3+5+7)=6x16=096.

In Sy, there are P numbers whose unit-digits are, respectively, 1, 3, 5 and
7. Thus the sum of unit-digits of the numbers in S; is

P3x(1+34+5+7)=6x16=096.

Hence by (AP),
a; = 16 + 48 + 96 + 96 = 256.

Similarly, we have:

as =P3x (14+3+5+7)+PPx(1+3+5+7)
+ P2 x (14+3+5+7)=240;
a3 =(P2+P3)x (1+3+5+7) =192
and as =P x (1+3+5+7)=96.
Thus,
a = a1 + 10az + 100as + 1000a4
= 256 + 2400 + 19200 + 96000
= 117856. g
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Remark. There is a shortcut to compute the sum o = 3 (n | n € S)
in part (ii). Observe that the 4 numbers in S; can be paired off as {1,7} and
{3,5} so that the sum of the two numbers in each pair is equal to 8 and the
12 numbers in S, can be paired off as {13,75}, {15,73}, {17, 71}, {35, 53},
... so that the sum of the two numbers in each pair is 88. Likewise, the 24
numbers in S3 and the 24 numbers in Sy can be paired off so that the sum
of the two numbers in each pair is equal to 888 and 8888 respectively. Thus

cx:=8><§+88><2+888><%+8888x22—4

2 2
= 117856.

1.3. Circular Permutations

The permutations discussed in Section 1.2 involved arrangements of objects
in @ row. There are permutations which require arranging objects in a
circular closed curve. These are called circular permutations.

Consider the problem of arranging 3 distinct objects a, b, ¢ in 3 positions
around a circle. Suppose the 3 positions are numbered (1), (2) and (3) as
shown in Figure 1.3.1. Then the three arrangements of a,b, ¢ shown in the
figure can be viewed as the permutations:

abe, cab, bea

respectively.

a c b
(1) (1) (1)

c b b a a c
(3) (2 (3 (2) (3 (2
abe cab bea

Figure 1.3.1.
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In this case, such “circular permutations” are identical with the usual
permutations, and thus there is nothing new worth discussing. To get
something interesting, let us now neglect the numbering of the positions
(and thus only “relative positions” of objects are concerned). As shown in
Figure 1.3.2, any of the 3 arrangements is a rotation of every other; i.e., the
relative positions of the objects are invariant under rotation. In this case,
we shall agree to say that the 3 arrangements of Figure 1.3.2 are identical.
In general, two circular permutations of the same objects are identical if
any one of them can be obtained by a rotation of the other.

abe cab bea

Figure 1.3.2.

Let A be a set of n distinct objects. For 0 < r < n, an r-circular
permutation of A is a circular permutation of any r distinct objects taken
from A. Let Q7 denote the number of r-circular permutations of A. We
shall derive a formula for Q7.

Example 1.3.1. Let A = {a,b,c,d}. There are altogether P§(= 24)
3-permutations of A and they are shown in Example 1.2.1. These 24 3-
permutations are re-grouped into 8 subsets as shown below:

abc cab beca acb bac cha
abd dab bda adb bad dba
acd dac cda adc cad dca
bed dbc cdb bde cbd dcb

It is noted that every 3-circular permutation of A gives rise to a unique
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such subset. For instance,

a

= {acd,dac, cda}

Conversely, every such subset corresponds to a unique 3-circular permuta-
tion of A. For instance,

{adb,bad, dba} =

Th
us we see that 94

4 _ 20 _ .
Q3'—3 8 | |

Example 1.3.1 tells us that Q5 = ;Ps. What is the relation between
Q7 and PP in general?

A circular permutation of r distinct objects zy,z3, ...,z shown below:

1

z, /*\ 9

T;

gives rise to a unique subset of r r-permutations:

L1Z2 Ty, TpZ1T2 - Ty—1, --., T2L3- - Tp T
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obtained through a rotation of the circular permutation. Conversely, every
such subset of r r-permutations of A corresponds to a unique r-circular
permutation of A. Since all the r-permutations of A can be equally divided
into such subsets, we have

n
Qr = PT' . (13.1)
In particular,
Pﬂ
Qr = —nl =(Mm-1!. (1.3.2)

Example 1.3.2. In how many ways can 5 boys and 3 girls be seated
around a table if

(i) there is no restriction?
(ii) boy B; and girl G, are not adjacent?

(iii) no girls are adjacent?

Solution (i) The number of ways is Q8 = 7!.

(ii) The 5 boys and 2 girls not including G can be seated in (7—1)! ways.
Given such an arrangement as shown in Figure 1.3.3, G; has 5(= 7 — 2)
choices for a seat not adjacent to By. Thus the desired number of ways is

6! x 5 = 3600.
B3
G
B 2
B,
B,
Bs
Gs3

Figure 1.3.3.

We may obtain another solution by using what we call the Principle of
Complementation as given below:
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Principle of Complementation (CP) If A is a subset of a finite
universal set U, then

U\ Al = u| - Al

Now, the number of ways to arrange the 5 boys and 3 girls around a
table so that boy B, and girl G, are adjacent (treating {B;,G;} as an
entity) is

(7-1)! x 2 = 1440.

Thus the desired number of ways is by (CP),
7! — 1440 = 3600.

(iii) We first seat the 5 boys around the table in (5 — 1)! = 4! ways.
Given such an arrangement as shown in Figure 1.3.4, there are 5 ways to
seat girl G1. As no girls are adjacent, Go and G3 have 4 and 3 choices
respectively. Thus the desired number of ways is

4!'x5x4x3=1440. g

Ba

Figure 1.3.4.

Example 1.3.3. Find the number of ways to seat n married couples
around a table in each of the following cases:

(i) Men and women alternate;

(if) Every woman is next to her husband.
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Solution. (i) The n men can first be seated in (n — 1)! ways. The
n women can then be seated in the n spaces between two men in n! ways.
Thus the number of such arrangements is (n — 1)! x nl.

(i) Each couple is first treated as an entity. The number of ways to
arrange the n entities around the table is (n — 1)!. Since the two people in
each entity can be permuted in 2! ways, the desired number of ways is

(n—1)!x 27,

Remark. A famous and much more difficult problem related to the
above problem is the following: How many ways are there to seat n married
couples (n > 3) around a table such that men and women alternate and
each woman is not adjacent to her husband? This problem, known as the
problem of ménages, was first introduced by the French mathematician
Francis Edward Anatole Lucas (1842 — 1891). A solution to this problem
will be given in Chapter 4.

1.4. Combinations

Let A be a set of n distinct objects. A combination of A is simply a subset
of A. More precisely, for 0 < r < n, an r-combination of A is an r-element
subset of A. Thus, for instance, if A = {a,b,¢,d}, then the following
consists of all the 3-combinations of A:

{a)b)c}’ {a’b)d}) {a’c’d}’ {b’ c’d}’

There are 4 in number. Let C? or () (which is read ‘n choose r’) denote the
number of r-combinations of an n-element set A. Then the above example
says that C§ = (g) = 4. We shall soon derive a formula for C7*.

What is the difference between a permutation and a combination of a
set of objects? A permutation is an arrangement of certain objects and
thus the ordering of objects is important, whereas a combination is just a
set of objects and thus the ordering of objects is immaterial. As a matter
of fact, every r-permutation of A can be obtained in the following way:

Step 1. Form an r-combination B of A.

Step 2. Arrange the r objects of B in a row.
/
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This provides us with a means to relate the numbers P> and C}*. Indeed,
we have by (MP):

Pr=CP xr!
and thus o |
n r_ nl
@ = (r) TS T (14.1)
In particular,
n n
Co = (0)=1 and Cj = (n)= )
Note that
n n! n! Cm
C" B r!(n - 7‘)' - (n - 7‘)!(1‘! — (n — 7‘))' - Cn—r)
i.e.

0)-(2)

For convenience, we show in Table 1.4.1 the values of (’:), where 0 < r <
n < 9. For instance, we have (g) =20 and (i) = 126.

"
n 012 3 4 5 6 7 89
0] 1

1{11

211 21

313 3 1

411 46 1

5115 10 10 5 1

616 15 20 15 6 1

711 7 21 3 3 21 7 1

8] 1 8 28 56 70 56 28 8 1
911 9 36 84 126 126 84 36 9 1

Table 1.4.1. The values of (7),0<r<n<9

One can see from Table 1.4.1 that

(0)+() -sewro-m- ()

In general, we have:
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Example 1.4.1. Prove that
n n—1 n—1
= 1.4.
()=C2)+C7) 043
where n,r € N with r < n.

Proof. Algebraic Proof. By (1.4.1),

n—1 n—1\ _ (n=1)! (n—=1)!
(r—1)+( r )-(r—l)!(n—r)!+r!(n—1—r)!
_ (n=Dlr+(n-1Y(n-r)

ri(n —r)!
_(n=DY(r+n-r)
- ri(n —r)!

Combinatorial Proof. Let A = {1,2,...,n}. By definition, there are (’:)
ways to form r-combinations S of A. We shall count the number of such S
in a different way.

Every r-combination S of A either contains “1” or not. If 1 € S, the

number of ways to form S is (':_-_i) If1¢ S, the number of ways to form
Sis (*;'). Thus by (AP), we have

()=C2)+(7)

= <+ N |

r r—1 r

Remark. In the second proof, we fix an enumeration problem and

count it in two different ways, giving rise to an equality relating two different
expressions. This is a useful way to derive combinatorial identities.

Example 1.4.2. By Example 1.1.4, there are 27 binary sequences of
length 7. How many such sequences are there which contain 3 0’s and 4
1’s?

Solution. To form such a sequence of length 7:

M @ B @ 6 6 M
we first select 3 of the 7 spaces for ‘0’ and then leave the remaining spaces

for ‘1’. There are (;) ways in the first step and (i) = 1 way in the next.
Thus the number of such binary sequences is given by (;) 'l
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Remarks. (1) In the above example, you may first select 4 of the 7
spaces for ‘1’ and obtain the answer (D, which is equal to (;) by identity
(1.4.2).

(2) In general, the number of binary sequences of length n with m 0’s
and (n — m) 1’s, where 0 < m < n, is given by (7).

Example 1.4.3. In how many ways can a committee of 5 be formed
from a group of 11 people consisting of 4 teachers and 7 students if

(i) there is no restriction in the selection?
(ii) the committee must include exactly 2 teachers?
(iii) the committee must include at least 3 teachers?

(iv) a particular teacher and a particular student cannot be both in the
committee?
Solution. (i) The number of ways is (1') = 11!/(5!6!) = 462.
(ii) We first select 2 teachers from 4 and then (5 — 2) students from 7.

The number of ways is
4\ (7
() =sxss=210

(iii) There are two cases: either 3 teachers or 4 teachers are in the
committee. In the former case, the number of ways is

() -srnes

while in the latter, the number of ways is

(-

Thus by (AP), the desired number of ways is 84+ 7 = 91.

(iv) Let T be the particular teacher and S the particular student. We
first find the number of ways to form a committee of 5 which includes both
T and S. Evidently, such a committee of 5 can be formed by taking the
union of {T',S} and a subset of 3 from the remaining 9 people. Thus the
number of ways to form a committee of 5 including T" and S is (g) = 84.
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Hence the number of ways to form a committee of 5 which does not include
both T and S is by (CP):

(151) _ (g) =462—84=378, by(i). m

Suppose that there are 8 players a,b,c,d,e, f,g,h taking part in the
singles event of a tennis championship. In the first round of the competition,
they are divided into 4 pairs so that the two players in each pair play against
each other. There are several ways to do so. For instance,

or (1) avsbd, cvsf, dvsh, evsy,

(2) avsh, bvsg, cvsf, dvse.

What is the number of ways that this arrangement can be made?

To phrase this sort of questions mathematically, let A be a set of 2n
distinct objects. A pairing of A is a partition of A into 2-element subsets;
i.e., a collection of pairwise disjoint 2-element subsets whose union is A.
For instance, if A is the set of 8 players {a,b,¢,d, e, f,g,h} as given above,

then
{{a,},{c, f},{d, h},{e, 9}}
and {{a) h}) {b)g}) {c) f}a {d: e}}

are different pairings of A. We note that the order of the subsets and the
order of the 2 elements in each subset are immaterial.

Example 1.4.4. Let A be a 2n-element set where n > 1. Find the
number of different pairings of A.

Solution. We shall give 3 different methods for solving the problem.

Method 1. Pick an arbitrary element, say z, of A. The number of ways
to select z’s partner, say y, is 2n — 1 (and {z,y} forms a 2-element subset).
Pick an arbitrary element, say z, from the 2n —2 elements of A\{z,y}. The
number of ways to select 2’s partner is 2n — 3. Continuing in this manner
and applying (MP), the desired number of ways is given by

(2n—1)(2n-3)---5-3-1.



22 Section 1.4. Combinations

Method 2. First, form a 2-element subset of A and put it in position (1)
as shown below. There are (2;‘) ways to do so.

Gy LY 6y 6 o G
m @ O (n)

. Next, form a 2-element subset from the remainder of A and put it in the
position (2). There are (*";'%) ways to do so. Continuing in this manner
and applying (MP), we see that the number of ways of arranging the n
2-element subsets in a row is:

2n\ (2n -2 4\ (2
2 2 2)\2)°
Since the order of the n subsets is immaterial, the desired number of ways
is:
(5% ()G
n! '

Method 3. We first arrange the 2n elements of A in a row by putting
them in the 2n spaces as shown below:

{ ) }’ { ) }’ ] { ’

o @ @ @ (2n-1)  (2n)
There are (2n)! ways to do so. Since the order of the elements in each
2-element subset and the order of the n subsets are immaterial, the desired
number of ways is given by

(2n)! _ (2n)
2Wx2Ax---x2Axn!  nlx2’
e e

|
n

It can be checked that the above 3 answers are all the same.

The above problem can be generalized in the following way. Let A be a
set of kn distinct elements, where k,n € N. A k-grouping of A is a partition
of A into k-element subsets; i.e., a collection of pairwise disjoint k-element
subsets whose union is A. Thus if A = {a;,a3,...,a12}, then

{{a1,a4, 09,012}, {a2,as,as,a10}, {as, ag, az,a11}}

is a 4-grouping of A. Clearly, a pairing of a 2n-element set A is a 2-grouping
of A. What is the number of different k-groupings of a set with kn elements?
(See Problem 1.43.)



Chapter 1. Permutations and Combinations 23

Example 1.4.5. (IMO, 1989/3) Let n and k be positive integers and
let S be a set of n points in the plane such that

(i) no three points of S are collinear, and

(ii) for any point P of S, there are at least k points of S equidistant
from P.

Prove that k < % + V2n.

Proof. For convenience, we call a line segment in the plane an edge if
it joins up any two points in S. Let £ be the number of edges in the plane.
We shall consider the quantity £.

First, since there are n distinct points in S and any two of them deter-

mine an edge, we have,
n
z_.(2>. 1)

Next, for each point P of S, by condition (ii), one can draw a circle
with centre P whose circumference C(P) contains at least k points of S.
Clearly, the points of S on C(P) determine at least (g) edges. As there are
n points P in S, the total number of these edges, counted with repetition,
is at least n(';)

Now, let us look at those edges which are counted more than once. An
edge is counted more than once when and only when it is a common chord
of at least 2 circles. Since two circles can have at most one common chord
and there are n such circles, the number of common chords, counted with
repetition, is at most (3). Thus

e2n(3)-(3) @)

Combining (1) with (2), we have

(3)-() <)
(3) <2(3)

k2 —k—2(n-1)<0.

or

which implies that
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Hence

k< 14+ /14+8(n-1)

2
<ty lm=livm
22 2 !

as required. g

Comments. (1) In the above proof, the quantity “¢” is first intro-
duced, and it is then counted as well as estimated from two different per-
pectives, thereby leading to the inequality: n(¥) — (3) < £= (3). Thisis a
common and useful technique, in combinatorics, in establishing inequalities
linking up some parameters.

(2) From the proof above, we see that condition (i) is not necessary
since, even if A, B, C are three collinear points, AB, BC,CA are regarded
as three distinct edges in the above argument.

In Section 1.3, we studied circular permutations, which are arrange-
ments of objects around a circle. We shall extend such arrangements to
more than one circle.

Example 1.4.6. If there must be at least one person in each table,
in how many ways can 6 people be seated

(i) around two tables?
(ii) around three tables?

(We assume that the tables are indistinguishable.)

Solution. (i) For 2 tables, there are 3 cases to consider according to
the numbers of people to be seated around the 2 respective tables, namely,

1) 5+1 (2) 4+2 (3) 3+3.

Case (1). There (g) ways to divide the 6 people into 2 groups of sizes 5
and 1 each. By formula (1.3.2), the 5 people chosen can be seated around
a table in (5 — 1)! ways and the 1 chosen in 0! way around the other. Thus
by (MP), the number of ways in this case is

(g) x 4! x 0! = 144.
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Case (2). There are (i) ways to divide the 6 people into 2 groups of
size 4 and 2 each. Thus, again, the number of ways in this case is

6
I 1! =
(4)x3.x1._90.

Case (3). We have to be careful in this case. The number of ways to
divide the 6 people into 2 groups of size 3 each is () (why?). Thus the
number of arrangements is

1/6
ot 1 1 = 40.
2(?.)x2.x2. 40

Hence by (AP), the desired number of arrangements is 144+ 90+ 40 = 274.

(ii) For 3 tables, there are also 3 cases to consider depending on the
number of people distributed to the 3 respective tables, namely,
(1) 441+1 (2) 3+2+1 (3) 2+2+2.

The number of arrangements in these cases are given below:

6\ /2
| ! I = 90:
(1) 2(|) (1) x 3! x 0! x 0! = 90;

(2) (g) (g) x 2! x 1! = 120;

1
(3) %(g) (;) x 1!'x 1! x 1! = 15.

Hence by (AP), the desired number of arrangements is 90 + 120 + 15 =
225. g

Given r,n € Z with 0 < n < r, let s(r,n) denote the number of ways
to arrange r distinct objects around n (indistinguishable) circles such that
each circle has at least one object. These numbers s(r,n) are called the
Stirling numbers of the first kind, named after James Stirling (1692-1770).
From Example 1.4.6, we see that s(6,2) = 274 and s(6,3) = 225. Other
obvious results are:

s(r,0)=0 ifr>1,
s(r,r) =1 ifr>0,
s(r,1)=(r—1)! forr>2,
s(rr=1)=(;) forr>2.

The following result, which resembles (1.4.3) in Example 1.4.1, tells us
how to compute s(r, n) for larger r and n from smaller r and n.
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Example 1.4.7. Show that
s(r,n)=s(r—1,n—1)+ (r—1)s(r — 1,n) (1.4.4)

where r,n € N with n < r.

Proof. For simplicity, we denote the r distinct objects by 1,2,...,r.
Consider the object “1”. In any arrangement of the objects, either (i) “1” is
the only object in a circle or (ii) “1” is mixed with others in a circle. In case
(i), there are s(r — 1,n — 1) ways to form such arrangements. In case (ii),
first of all, the r — 1 objects 2,3, ..., are put in n circles in s(r — 1,n)
ways; then “1” can be placed in one of the » — 1 distinct spaces to the
“immediate right” of the corresponding » — 1 distinct objects. By (MP),
there are (r—1)s(r—1,n) ways to form such arrangements in case (ii). The
identity now follows from the definition of s(r,n) and (AP). g

Using the initial values 5(0,0) = 1,s(r,0) = 0 for » > 1 and s(r,1) =
(r—1)! for r > 1, and applying the identity (1.4.4), one can easily find out
the values of s(r,n) for small r and n. For r,n with 0 < n <r <9, the
values of s(r,n) are recorded in Table 1.4.2.

r < 0 1 2 3 4 5 6 7 8 9
0|1

110 1

2 |0 1 1

3]0 2 3 1

4 |0 6 1 6 1

5 |0 24 50 35 10 1

6 |0 120 274 225 85 15 1

7|10 720 1764 1624 735 175 21 1

8 |0 5040 13068 13132 6769 1960 322 28 1

9 |0 40320 109584 118124 67284 22449 4536 546 36 1

Table 1.4.2. The values of s(r,n), 0<n<r<9
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1.5. The Injection and Bijection Principles

Suppose that a group of n students attend a lecture in a lecture theatre
with 200 seats. Assume that no student occupies more than one seat and no
two students share a seat. If it is known that every student has a seat, then
we must have n < 200. If it is known, furthermore, that no seat is vacant,
then we are sure that n = 200 without actually counting the number of
students. This is an example which illustrates two simple principles that
we are going to state. Before doing so, we first give some definitions. Let
A, B be finite sets. A mapping f : A — B from A to B is injective (or
one-one) if f(a1) # f(a2) in B whenever a; # a3 in A. f is surjective (or
onto) if for any b € B, there exists a € A such that f(a) = b. f is bijective
if f is both injective and surjective. Every injective (resp., surjective and
bijective) mapping is also called an injection (resp., a surjection and a
bijection).

The Injection Principle (IP) Let A and B be two finite sets.
If there is an injection from A to B, then |A| < |B|.

The Bijection Principle (BP) Let A and B be two finite sets.
If there is an bijection from A to B, then |A| = |B].

Just like (AP), (MP) and (CP), the two principles (IP) and (BP) as
given above are also trivially true. However, as we will see below, they are
also useful and powerful as tools for solving counting problems.

Example 1.5.1. A student wishes to walk from the corner X to the
corner Y through streets as given in the street map shown in Figure 1.5.1.
How many shortest routes are there from X to Y available to the student?

Y

Figure 1.5.1.
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Solution. Let A be the set of all shortest routes from X to Y. We
shall find |A4].

We first note that every route in A consists of 7 continuous segments
(a segment is part of a street connecting two adjacent junctions) of which
4 are horizontal and 3 vertical. Thus if we use a ‘0’ to denote a horizontal
segment and a ‘1’ to denote a vertical segment, then every route in A can be
uniquely represented by a binary sequence of length 7 with 4 0’s and 3 1’s
(for instance, the shortest route shown by bold line segments in Figure 1.5.1
is represented by 1001100). This way of representing a route clearly defines
a mapping f from A to the set B of all binary sequences of length 7 with 4
0’s and 3 1’s. It is easy to see that f is both one-one and onto, and hence
it is a bijection from A to B. Thus by (BP) and Example 1.4.2, we have

|[Al=1Bl=(). u

Remark. The street map of Figure 1.5.1 is a 5 x 4 rectangular grid.
In general, if it is an (m + 1) x (n + 1) rectangular grid consisting of m + 1
vertical streets and n + 1 horizontal streets, then the number of shortest
routes form the southwest corner X to the northeast corner Y is equal to
the number of binary sequences of length m+n with m 0’s and n 1’s, which
by Remark (2) of Example 1.4.2, is given by

") - (37

Given a set X, the power set of X, denoted by P(X), is the set of all
subsets of X, inclusive of X and the empty set §. Thus, for instance, if
X =1{1,2,3}, then

P(X) =1{0,{1},{2},{3},{1,2},{1,3},{2,3}, X}.

We observe that [P(X)| = 8. In general, what can be said about |P(X)]| if
X consists of n distinct elements?

Example 1.5.2. Show that if |X| = n, then |P(X)| = 2" for all
n € N.
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Proof. We may assume that X = {1,2,...,n}. Now, let
B={ajay...ap|a;=0or 1, i=1,2,..,n}

be the set of all binary sequences of length n.

Define a mapping f : P(X) — B as follows: For each S € P(X) (ie.,
S C X), we put
F(S) =byby...b,
where S
b = {1 }f i€ S,
0 ifigsS.
(For instance, if X = {1,2,3,4,5}, S; = {4} and S; = {2,3,5}, then
f(S1) = 00010 and f(S2) = 01101.) It is easy to see that f is a bijection
from P(X) to B. Thus by (BP), |P(X)| = |B|. Since |B| = 2" by Example
1.1.4, we have |P(X)| = 2", as required. g

Example 1.5.3. Let X = {1,2,...,n}, where n € N. Show that the
number of r-combinations of X which contain no consecutive integers is

given by
n—r+1
r )
where 0 <r<n-—r+1.

As an illustration, consider X = {1,2,...,7}. All the 3-combinations of
X containing no consecutive integers are listed below:

{1,3,5}, {1,3,6}, {1,3,7}, {1,4,6}, {1,4,7},
{1,57}, {2,46}, {247}, {2,57}, {3,57}

There are 10 in number and (7'2"'1) = 10.

Proof. Let A be the set of »-combinations of X containing no consec-
utive integers, and B be the set of r-combinations of Y, where

Y ={1,2,..,n—(r-1)}.

We shall establish a bijection from A to B.

Let S = {s1,52,53,...,5} be a member in A. We may assume that
51 < 83 < 83 < --- < 8. Define

f(S) = {31732— 1)33 _2"")37‘ —(1‘— 1)}'
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Observe that as s; and s;4+; are non-consecutive, all the numbers in f(S) are
distinct. Thus f(S) € B, and so f is a mapping from A to B. It is easy to
see that f is injective. To see that f is surjective, let T' = {t1,12,t3,...,¢,}
be a member in B. Consider

S = {tl,tz +1,t3+2,...,t. + (1’— 1)}

It can be checked that S is a member in A. Also f(S) = T by definition.
This shows that f: A — B is a bijection. Hence by (BP), we have

n—r+1
i=181= ("7T*).

Remark. The above problem can be extended in the following way.
Given m € N, aset S = {a1, a2, ...,a,} of positive integers, where a; < az <
... < ar, is said to be m-separated if a; — a;—; > m for each i = 2,3, ..., r.
Thus S is 2-separated if and only if S contains no consecutive integers. Let
X ={1,2,...,n}, where n € N. Using (BP), we can also find a formula for
the number of r-element subsets of X which are m-separated. Readers who
are interested may see Problem 1.91.

In the above three examples, three sets A (namely, the set of shortest
routes, the power set P(X) and the set of r-combinations containing no
consecutive integers) and their counterparts B (namely, the set of binary
sequences of length 7 with 4 0’s, the set of binary sequences of length n and
the set of r-combinations, respectively) are considered. By establishing a
bijection from A to B, we have by (BP), |A| = | B|. Note that in each case,
the enumeration of |A| by itself is not straightforward, while that of |B|
is fairly standard and so much easier. Thus with (BP), we can sometimes
transform a hard problem into an easier one. This is always a crucial step
in the process of solving a problem.

The above three examples involve only the applications of (BP). In what

follows, we shall give an interesting example which makes use of both (BP)
and (IP).
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Example 1.5.4. (IMO, 1989/6) A permutation z1z;...z2, of the set
{1,2,...,2n}, where n € N, is said to have property P if |z; — ziy1| = n
for at least one i in {1,2,...,2n — 1}. Show that, for each n, there are more
permutations with property P than without.

This problem, proposed by Poland, was placed last in the set of the six
problems for the 1989 IMO, and was considered a more difficult problem
among the six. The original proof given by the proposer makes use of
recurrence relations which is rather long and looks hard. However, it was
a pleasant surprise that a contestant from the China team was able to
produce a shorter and more elegant proof of the result. Before we see this
proof, let us first try to understand the problem better.

Let S = {1,2,...,2n}. Clearly, a permutation of S does not have prop-
erty P if and only if for each k = 1, 2,...,n, the pair of numbers k and n+k
are not adjacent in the permutation. For n = 2, the set A of permutations
without P and the set B of permutations with P are given below:

A ={1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},
B ={1243, 1324, 1342, 1423, 2134, 2314, 2413, 2431,
3124, 3142, 3241, 3421, 4132, 4213, 4231, 4312}.

Clearly, |[B| = 16 > 8 = |A|.

Proof. The case when n = 1 is trivial. Assume that n > 2. Let A
(resp., B) be the set of permutations of S = {1,2,...,2n} without property
P (resp., with P). To show that |B| > |A|, by (IP) and (BP), it suffices to
establish a mapping f : A — B which is injective but not surjective.

For convenience, any number in the pair {k,n + k} (k = 1,2,...,n) is
called the partner of the other. If k and n+k are adjacent in a permutation,
the pair {k,n + k} is called an adjacent pair of partners.

Let a = z1%3...x2, be an element in A. Since a does not have property
P, the partner of z; is z, where 3 < r < 2n. Now we put

f(a) = zoz3.. 2, 1212, Tr 1. T2n

by taking z; away and placing it just in front of its partner z,. In f(a),
it is clear that {;,z,} is the only adjacent pair of partners. (Thus, for
instance, f(1234) = 2134 and f(2143) = 1243.) Obviously, f(a) € B and
f defines a mapping from A to B.
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We now claim that f is injective. Let
ax=T1T2...Z29
B =wny2-Yon

be elements of A in which z,’s partner is z, and y,’s partner is y,, where
3 < r,s < 2n. Suppose f(a) = f(B); i.e.,

T2Z3.. Lr-1Z1%y.--T2n = Y2Y3---Ys—1Y1Ys-.-Y2n-

Since {z1,z,} (resp., {y1,¥s}) is the only adjacent pair of partners in f(a)
(resp., f(B)), we must have r = s, z; = y; and z, = y,. These, in turn,
imply that z; = y; for all i = 1,2,...,2n and so a = B, showing that f is
injective.

Finally, we note that f(A) consists of all permutations of S having
exactly one adjacent pair of partners while there are permutations of .S in
B which contain more than one adjacent pair of partners. Thus we have
f(A) C B, showing that f is not surjective. The proof is thus complete. g

1.6. Arrangements and Selections with Repetitions

In the previous sections we studied arrangements and selections of elements
from a set in which no repetitions are allowed. In this section we shall
consider arrangements and selections in which elements are allowed to be
repeated.

Example 1.6.1. Let A = {a,b,c}. All the 2-permutations of A with
repetitions allowed are given below:

aa, ab, ac, ba, bb, be, ca, cb, cec.

There are 9 in number. g

In general, we have:

@ The number of r-permutations of the set

A= {ay,a,,..,a,},

where r,n € N, with repetitions allowed, is given by n".
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Proof of (I). There are n choices for the first object of an r-
permutation. Since repetitions are allowed, there are again n choices for
each of the remaining r — 1 objects of an r-permutation. Thus the number
of such permutations is, by (MP), pn-n---n=n". g

T

Example 1.6.2. A 4-storey house is to be painted by some 6 different
colours such that each storey is painted in one colour. How many ways are
there to paint the house?

Solution. This is the number of 4-permutations of the set {1,2,...,6}
of 6 colours with repetitions allowed. By (I), the desired number is 6%. g

For those permutations considered in (I), an element of the set A can
be repeated any number of times. We now consider another type of per-
mutations in which the number of times an element can be repeated is
limited.

Example 1.6.3. Find the number of permutations of the 5 letters:

a,a,a,b,ec.

Solution. Let a be the desired number of such permutations. Fix one
of them, say abaac. Imagine now that the 3 a’s are distinct, say a;, a2, as.
We then observe from the following exhibition

aibasazc
algaaazc
asgbajagc
asbaza;c
a3ba1a2c
agbasa;c
that “abaac” corresponds to a set of 3! = 6 permutations of the set

{a1,a2,as,b, c} keeping the pattern of abaac, and vice versa.

Since there are 5! permutations of {a1, as,as, b,c}, we have

a3 =5
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In general, we have:

(Im) Consider a collection of r objects, in which r; are of type 1,
ry are of type 2, ..., and r, are of type n, where ry + ro +
.-+ r, = r. The number of different permutations of the
collection of objects, denoted by P(r;rq,rs,...,1,), is given
by

r!

P(r;r1,7g, .., Th) = —_
r1:12: - Pp.

One may extend the idea shown in Example 1.6.3 to prove (II). We give
a different approach here.

Proof of (II). In any permutation of the collection of r objects, there
are r; positions to place the r; objects of type ¢, for each i = 1,2,...,n
Different choices of positions give rise to different permutations.

We first choose r; positions from the r distinct positions and place the
r; identical objects of type 1 at the r; positions chosen. There are (r'l) ways
to do so. Next, we choose rp positions from the remaining r — r; positions
and place the r, identical objects of type 2 at the ry positions chosen. There
are (' &

we choose ry, positions from the remaining r — (r1+r2+ -+ -+ ra-1)(= 75)

) ways to do so. We proceed in this manner till the final step when

positions and place the r, identical objects of type n at the r, positions
left. There are ("(""""" “+72-1)) ways to do so. By (MP) and formula
(1.4.1), we then have

Plrir,ra,n) = (:1) (r ;;1) (r - (n +r: + ...r,,-l))
n

r! (r—mr)! (r—=ri—rg—---=rp_y)!
rl'(r —r)! 7‘2'(1‘ —r - 1'2)' r,.!(r —ri—rg— - —1y,)!
r!
—1'1!7’2!"'7’,,!. '

The results (I) and (II) may be rephrased in a more convenient way by
using a notion, called a multi-set. Just like a set, a multi-set is a collection
of objects, but its members need not be distinct. Thus, for instance, M =
{a,b,a,c,b,a} is a multi-set consisting of 3 a’s, 2 b’s and 1 ¢. This multi-set
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can be written in a neater way as M = {3.a,2-b,c}. In general, the
multi-set

M= {1’1 c@1,7T2 B2y ..y T * a,.},

where n,ry, 73, ..., 7, are nonnegative integers and ay, as, ..., a, are distinct
objects, consists of r; a1’s, r ay’s, ... and r, a,’s. Foreachi=1,2,...,n, the
number r; is called the repetition number of the object a;. For convenience,
given an object a, we may write 0o -a to indicate that a can be repeated an
infinite number of times. Thus a multi-set in which b and e occur an infinite
number of times, and a, ¢, d have, respectively, the repetition numbers 2, 7,
4, is denoted by {2-a,00-b,7-¢,4-d,00 - e}.

An r-permutation of M = {ry-a1,r3-az,..., s -a,} is an arrangement
of r objects taken from M with at most r; of a; (¢ = 1,2,...,n) in a row.
A permutation of M is an arrangement of all the objects of M in a row.
An r-permutation of the multi-set {co - a;,00 - ay,...,00 - a,} is similarly
defined, except that the number of a;’s chosen is not limited for all 4.

Using the above terminology, we may re-state the results (I) and (II) as
follows:

I The number of r-permutations of the multi-set
{c0-a1,00-ay,...,00-an}

is given by n".

In Let M = {ry-a1,72-a2,...,7n-an} andr = ri+ro+---+ry.
Then the number P(r;ry,rs,...,r,) of permutations of M is
given by |

r!
P(T; T1,T2y 00y 7’”) = m

Example 1.6.4. Find the number of ternary sequences of length 10
having two 0’s, three 1’s and five 2’s.
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Solution. The number of such ternary sequences is the number of
permutations of the multi-set {2-0,3 - 1,5 -2}, which is equal to
10!

by (II). =

Example 1.6.5. Find the number of ways to pave a 1 x 7 rectangle
by 1 x1,1x 2 and 1 x 3 blocks, assuming that blocks of the same size are
indistinguishable.

As an illustration, two ways of paving are shown below:

0,9,
..... 000000000000000 ©_0| )
..0.. ’0’0000000000000000
e 0000000009

e o oll 0.0,0.0.0,0,.09 Jooo

For i = 1,2, 3, we let b; denote an 1xi block. Thus the first way shown above
may be represented by byb1b3b;, which is a permutation of {2 - by, b, b3},
while the second way by by b3bs, which is a permutation of {b;,2-b3}. Note
that in each case, the sum of the sub-indices of b;’s is “7”.

Solution. From the above illustration, we see that the desired number
of ways is equal to the number of permutations of some b;’s such that the
sum of the sub-indices of such b;’s is 7. The following 8 cases cover all the
possibilities:

@) A{7-b1} (i)  {5-b1,b2}
(i) {4-b1,bs}  (iv) {3-b1,2 b2}
(V) {2 . bl y b2, b3} (Vl) {bl, 3- bg}
(vii) {b1,2-bs}  (viii) {2-bs,bs}.

For each case, the number of permutations of the multi-set is shown below:

(i)
(iii)
(v)
(vii)

@ g=o
=5 (iv) 31'-, =10
=12 (vi) 4
=3 (viii) 3H=3.

@ s pja =
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Thus the desired number of ways is

146+5+10+124+44+3+3=44. g

Example 1.6.6. Show that (4n)! is a multiple of 23" - 3", for each
natural number n.

Proof. Consider the multi-set
M={4-a1,4-a,..,4-a,}.

By (1D, _(dn) _ (4n)! _ (4n)!

P(4n;4,4,..., )— (4!)” - (23 _3)11 - 23'1 ,3”‘
n

The result now follows as P(4n;4,4,...,4) is a whole number. g

We now turn our attention to the problem of counting the number of
combinations with repetitions.

Let A = {1,2,3,4}. Then there are (g) = 4 ways to form 3-combinations
of A in which no elements are repeated. Suppose now elements are allowed
to be repeated. How many 3-combinations can be formed? One can find
out the answer simply by listing all such 3-combinations as shown below.
There are altogether 20 in number.

{1,1,1}, {1,2,2}, {1,3,4}, {2,2,4}, {3,3,3},
{17 1’2}7 {1’2’ 3}) {174’ 4}’ {2’ 3’ 3}) {3) 3’4}’
{1,1,3}, {1,2,4}, {2,2,2}, {2,3,4}, {3,4,4},
{1,1,4}, {1,3,3}, {2,2,3}, {2,44}, {444}
Let ‘
M = {c00-a1,00-az,..,00-an}
be a given multi-set where n € N. A multi-set of the form
{ml +@1, M3 - @2,...,My * an})

where m;’s are nonnegative integers, is called a (mq + mg + --- + m,)-
element multi-subset of M. Thus, as shown above, there are 20 3-element
multi-subsets of the multi-set {0o0-1,00:2,00-3,00-4}. For a nonnegative
integer r, let H' denote the number of r-element multi-subsets of M. The
above example shows that Hiy = 20. We shall find a formula for H?. To
get to this, let us consider the following example.
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Example 1.6.7. There are 3 types of sandwiches, namely chicken (C),
fish (F') and ham (H), available in a restaurant. A boy wishes to place an
order of 6 sandwiches. Assuming that there is no limit in the supply of
sandwiches of each type, how many such orders can the boy place?

Solution. This problem amounts to computing H3. It is tedious to
find HZ by listing all 6-element multi-subsets of {00 - C,00 - F,00 - H} as
how we did before. We introduce an indirect way here.

The table below shows 4 different orders:

C F H
(1) oo o 0o0o0
(2) o 0000 o
(3) oo 0000
(4) ooo0 000

(1) 2 chicken, 1 fish and 3 ham sandwiches,
(2) 1 chicken, 4 fish and 1 ham sandwiches,
3) 2 fish and 4 ham sandwiches,
(4) 3 chicken and 3 ham sandwiches.

It is now interesting to note from the table that if we treat a “vertical
stroke” as a ‘1’, then order (1) can be uniquely represented by the binary

sequence
00101000,
while (2), (3) and (4) respectively by
01000010,
10010000,
and 00011000.

In this way, we find that every order of 6 sandwiches corresponds to a binary
sequence of length 8 with 6 0’s and 2 1’s, and different orders correspond to
different binary sequences. On the other hand, every such binary sequence
represents an order of 6 sandwiches. For instance, 01001000 represents the
order of 1 chicken, 2 fish and 3 ham sandwiches. Thus, we see that there is
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a bijection between the set of such orders and the set of binary sequences
with 6 0’s and 2 1’s. Hence by (BP) and Remark (2) of Example 1.4.2, the
desired number of ways is HZ = (3).
So, can you now generalize the above idea to obtain a formula for H*?
Look at the following table. The first row of the table shows the n
types of objects of the multi-set M = {00 -a;,00 - as,...,00 - a, } which are
separated by n — 1 vertical strokes.

ay ag as an
S: 00...0 00...0 00...0 00...0
N — N—— N — N

ri r2 rs Tn

Using this framework, every multi-subset S = {ry -a1,r2-az,...,7y -an} of
M, where r; > 0 for all 7, can be represented by a row having r; 0’s within
the interval under a;. If we treat each vertical stroke as an ‘1’; then every
r-element multi-subset of M corresponds to a unique binary sequence of
length r + n — 1 with r 0’s and (n — 1) 1’s. This correspondence is indeed
a bijection between the family of all r-element multi-subsets of M and the
family of all such binary sequences. Thus by (BP) and Remark (2) of
Example 1.4.2, we obtain the following result.

(111) Let M = {00 a;,00 - a3,...,00 - @, }. The number H} of
r-element multi-subsets of M is given by

H? = (r+7:—1)'

Result (III) can be proved in various ways. We give another proof below.

Another Proof of (III). For convenience, we represent a; by ¢, i =
1,2,..,n,and so M = {c0-1,00-2,...,00 -n}. Let A be the family of all
r-element multi-subsets of M and B be the family of all r-combinations of
the set {1,2,...,r + n — 1}. Define a mapping f : A — B as follows: For
each r-element multi-subset S = {b,, b2, ...,b,} of M, where 1 < b; < b3 <
. <b. <m,let

f(S) = {bl,bz +1,b3+2,...,b. + (1‘ - 1)}
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It should be noted that members in f(S) are distinct and so f(S) € B.
It is easy to see that f is injective. To show that f is surjective, let T' =
{e1,¢2,...,¢,} be an r-combination of {1,2,...,r + n — 1} with ¢; < ¢2 <
.-+ < ¢,. Consider

S={e1,e2—1,e3—2,...,¢e, — (r—1)}.

Observe that S is an r-element multi-subset of M and by definition, f(S) =
T. This shows that f is surjective.

We thus conclude that f is a bijection from A to B. Hence by (BP),

r+n-1
H:‘=|A|=|B|=( " )

Remarks. (1) Let M’ = {p;-a1,p2-a3, ..., Pn-apn} be a multi-set. From
the above discussion, we see that the number of r-element multi-subsets

{7’1 c@1,T2 @2, ..,Tn * a,.},

(0 < r; < pi, for all i) of M’ is also given by ('+:,"1) if » < p; for all 4.
On the other hand, if r > p; for some ¢, then the above statement is
invalid. This case will be studied in Chapter 5.

(2) The reader might have noticed that there is some similarity be-."
tween the above proof and that given in Example 1.5.3. Indeed, the rule
defining f here is the same as that defining f~! there.

1.7. Distribution Problems

We consider in this section the following problem: Count the number of
ways of distributing r objects into n distinct boxes satisfying certain con-
ditions. We split our consideration into two cases: (1) objects are distinct,
(2) objects are identical (or indistinguishable).

Case (1) Distributing r distinct objects into n_distinct boxes.

(i) If each box can hold at most one object, then the number of ways
to distribute the objects is given by

n(n—-1)(n-2)---(n—r+1)= PP,
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since object 1 can be put into any of the n boxes, object 2 into any of the
n — 1 boxes left, and so on.

(ii) If each box can hold any number of objects, then the number of
ways to distribute the objects is given by

as each object can be put into any of the n boxes.

(iii) Assume that each box can hold any number of objects and the
orderings of objects in each box count.

In this case, the 1st object, say a;, can be put in any of the n places
(namely, the n boxes); and the 2nd object, say a2, can be put in any of
the n + 1 places (the n — 1 boxes not containing a; plus the left and right
positions of @; in the box containing a;). Similarly, the 3rd object can be
put in any of the n + 2 places due to the presents of @) and a3, and so on.
Thus the number of ways that an arrangement can be made in this case is
given by

nn+1)(n+2)---(n+ (r-1)).

left right
l a1 l
box 1 box 2 box 3 box n

There is another way to solve the problem. As shown below,

asas I a I azas «—— agaslajlagas

box 1 box 2 box 3
n=3,r=5

one can establish a bijection between the set of such distributions of r dis-
tinct objects a, ay, ..., a, into n distinct boxes and the set of arrangements
of the multi-set {a1,a2,...,a,,(n — 1) - 1} (we treate each vertical stroke
separating adjacent boxes as a ‘1’). Thus by (BP) and result (II) in Section
1.6, the desired number of ways is given by

(n=14r)!
(n=1)2 "
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which agrees with the above result.

Case (2) Distributing r identical objects into n distinct boxes.

(i) Assume that each box can hold at most one object (and thus r < n).

In this case, there is a 1-1 correspondence between the ways of distri-
bution and the ways of selecting r boxes from the given n distinct boxes.
Thus the number of ways this can be done is given by (7).

(ii) Assume that each box can hold any number of objects.

In this case, a way of distribution can be represented by
{7’1 Q1,72 @2,..,,Tp * aﬂ})

where 7;’s are nonnegative integers with r1 + 73+ --+r, = r, which means
that r; objects are put in box i, i = 1,2,...,n. Thus a way of distribution
can be considered as an r-element multi-subset of M = {c0-a;, 00-ay, ...,00-
a,}, and conversely, every r-element multi-subset of M represents a way of
distribution. Hence, the number of ways this can be done is given by

H,":(r"':_l),

by result (III) in Section 1.6.

(iii) Assume that each box holds at least one object (and thus r > n);
i.e., no box is empty.

In this case, we first put one object in each box to fulfill the requirement
(this can be done in one way), and then distribute the remaining r — n
objects in the boxes in an arbitrary way. By (MP) and the result in (ii),
the desired number of ways is given by

((r - 1:)_+nn - 1) _ (: : i) .

By identity (1.4.2), this can also be written as

(220)
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Example 1.7.1. How many ways are there to arrange the letters of
the word ‘VISITING’ if no two I’s are adjacent?

Solution. Method 1. The letters used are V, S, T, N, G and 3 I's. We
first arrange V, S, T, N, G in a row. There are 5! ways. Take one of these
arrangements as shown below.

— VvV __ S _ T _ N __ G _
1st 2nd 3rd 4th 5th 6th

There are 6 spaces separated by the 5 letters. The problem is now reduced
to that of distributing the 3 identical I’s in the 6 places such that each place
can hold at most one I (no 2 I’s are adjacent). By Case (2)(i), the number
of ways to do so is giv;é by (g) . Thus by (MP), the desired number of ways

is 6
]
5.(3) .0

In the above method, we first consider “V, S, T, N, G” and then 3 I’s.
In the next method, we reverse the order.

Method 2. We first arrange the 3 I’s in a row in one way:

— I _ 1 _ 1 _
1st 2nd 3rd 4th

Then treat the 5 letters “V, S, T, N, G” as 5 identical “z”. Since no 2 I’s
are adjacent, one ‘z’ must be put in the 2nd and 3rd places (this can be
done in one way):

1st 2nd 3rd 4th

Now, the remaining 3 z’s can be put in the 4 places arbitrarily in (**3~1) =
(5) ways by Case (2)(ii). Finally, by restoring the original letters that each
[{g%% 2]

z” represents (so 5! ways to arrange them) and by applying (MP), the
desired number of ways is given by

G
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Example 1.7.2. (Example 1.2.3(ii) revisited) In how many ways can
7 boys and 3 girls be arranged in a row so that the 2 end-positions are
occupied by boys and no girls are adjacent?

In Example 1.2.3, this problem was solved by considering the arrange-
ment of boys followed by that of girls. In the following solution, we reverse
the order.

Solution. The 3 girls can be arranged in 3! ways.  Fix one of them:

— G — Gy — Gz —
1st 2nd 3rd 4th

Then treat the 7 boys as 7 identical “z”. To meet the requirements, one
“z” must be placed in each of the 4 places separated by the 3 girls as shown
below:

:cGla:szGsl'

Now the remaining 3 z’s can be put in the 4 places arbitrarily in (3"';' 1) =
(g) ways by Case (2)(ii). Finally, by restoring the meaning of ‘z’ and
applying (MP), we obtain the desired number of ways:

6
3!~(3) -MN=T7-.6-5-4. g

Example 1.7.3. (Example 1.5.3 revisited) Let X = {1,2,..,n},
where n € N. Show that the number of r-combinations of X which contain
no consecutive integers is given by ("':+1), where 0 <r<n—-r+1.

Proof. We first establish a bijection between the set A of all such
r-combinations of X and the set B of all binary sequences of length n with
r 1’s such that there is at least a ‘0’ between any two 1’s.

Define a mapping f : A — B as follows: given such an r-combination
S = {k1,ka,....kr} of X, where 1 < k1 <kz <...<k, <n,let f(S) =
biby - - - by, where

G poo 1A= Rk,
*7 L0 otherwise.
For instance, if n = 8 and r = 3, then

f({2,4,7}) = 01010010
and  f({1,5,8}) = 10001001.
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It is easy to check that f is a bijection between A and B. Thus |A| = |B|.

Our next task is to count |B|. Observe that a binary sequence in B
can be regarded as a way of distributing n — r identical objects into r + 1
distinct boxes such that the 2nd, 3rd, ... and rth boxes are all nonempty
as shown below:

01010010 «— 0 | 0 | 00 I 0
1st 2nd 3rd 4th
10001001 | 000 | 00 |
1st 2nd 3rd 4th

To get one such distribution, we first put one object each in the 2nd, 3rd, ...
and rth boxes. We then distribute the remaining (n—7)—(r—1) = n—2r+1
objects in an arbitrary way to the r + 1 boxes including the 1st and last

boxes. The first step can be done in one way while the second step, by the
result of Case (2)(ii), in

((n - 2r:-_1)2-:-(’-r1-{- 1) - 1)

ways. Thus we have

n—r+1 n—r+1
|AI—IBI—(1’:—21‘+1)—( r )’
by identity (1.4.2). g
We now turn our attention to consider the following important and

typical problem in combinatorics, namely, finding the number of integer
solutions to the linear equation:

1+ x4+ -tz =1r (171)
in n unknowns z1,zs,...,z,, where r and n are integers with » > 0 and

n>1.

An integer solution to the equation (1.7.1) is an n-tuple (ey, ez, ..., e,) of
integers satisfying (1.7.1) when z; is substituted by e;, foreachi = 1,2,...,n.
Thus, for instance, (—1,-4,7),(2,0,0),(0,1,1),(0,2,0) and (0,0,2) are
some integer solutions to the equation

z1+z2+2z3=2.



46 Section 1.7. Distribution Problems

There are infinitely many integer solutions to (1.7.1). In this section,
we shall confine ourselves to “nonnegative” integer solutions (i.e., ¢; > 0,

for all 7).

Example 1.7.4. Show that the number of nonnegative integer solu-

tions to equation (1.7.1) is given by

)

Proof. Every nonnegative integer solution (ey,ez,...,e,) to (1.7.1)
corresponds to a way of distributing r identical objects to n distinct boxes

as shown below:

€1 €2 n
[o---07] + [ o---0] + 4 =r.
box 1 box 2 box n

Clearly, different solutions to (1.7.1) correspond to different ways of distri-
bution. On the other hand, every such way of distribution corresponds to
a nonnegative integer solution to (1.7.1). Thus by (BP) and the result in
Case (2)(ii), the desired number is given by

()

We now review all the problems in this chapter which give rise to the

important number ("t"~1).
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The number of ways of selecting r objects from n different
types of objects with repetitions allowed

= the number of r-element multi-subsets of the multi-set
{0 -a;,00-a3,...,00-a,}

= the number of ways of distributing r identical objects into
n distinct boxes

= the number of nonnegative integer solutions to the equation

Tatza+-taa=r

e h
= H?

P

Some problems of distributing objects (identical or distinct) into distinct
boxes have just been studied. In what follows, we shall study a problem of
distributing distinct objects into identical boxes. Problems of distributing
identical objects into identical boxes will be discussed in Chapter 5.

Given nonnegative integers r and n, the Stirling number of the second
kind, denoted by S(r,n), is defined as the number of ways of distributing
distinct objects into n identical boxes such that no box is empty.

The following results are obvious.

(i) S(,0)=1,
(ii) S(r,0)=S(0,n) =0 for all »,n € N,
(iii) S(rn)>0ifr>n>1,
(iv) S(r,n)=0ifn>r>1,
(v) S(r1l)=1forr>1,
(vi) S(r,r)=1forr>1.

We also have (see Problem 1.84):
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(vii) S(r,2)=2""1-1,

(viii) S(r,3)=3@"1+1)-2r"1,
(ix) S(rr-1)=(}),
(®  S(rr-2)=(3) +3()-

The following result bears some analogy to those given in Example 1.4.1
and Example 1.4.7.

Example 1.7.5. Show that
S(r,n)=S(r—1,n-1)+nS(r-1,n) (1.7.2)

where r,n € N with r > n.

Proof. Let a; be a particular object of the r distinct objects. In any
way of distributing the r objects into n identical boxes such that no box
is empty, either (i) a; is the only object in a box or (ii) a; is mixed with
others in a box. In case (i), the number of ways to do so is S(r —1,n —1).
In case (ii), the r — 1 objects (excluding a,) are first put in the n boxes in
S(r — 1,n) ways; then a; can be put in any of the boxes in n ways (why?).
Thus the number of ways this can be done in case (ii) is n.S(r — 1,n). The
result now follows by (AP). g

Using some initial values of S(r,n) and applying the identity (1.7.2),
one can easily construct the following table:

Let A = {1,2,..,7}. For n € N, an n-partition of A is a collection
{S1,S3,...,Sn} of n nonempty subsets of A such that

(i)S.'ﬂSj =0fori#j
and (ii) “-'31 Si=A.

A partition of A is an n-partition of A for some n =1,2,...,7.
A binary relation R on A is an equivalence relation on A if
(i) R is reflexive; i.e., aRa for all a € A,
(ii) R is symmetric; i.e., if a,b € A and aRb, then bRa, and
(iii) R is transitive; i.e., if a,b,¢ € A, aRb and bRc, then aRc.
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~Nlo1 2 3 4 5 6. 7 809
0| 1

1] 01

2l 01 1

301 3 1

alo1 7 6 1

5/ 01 15 25 10 1

6/ 01 31 9 6 15 1

7] 0 1 63 301 350 140 21 1

8| 0 1 127 966 1701 1050 266 28 1
o] 0 1 255 3025 7770 6951 2646 462 36 1

Table 1.7.1. The values of S(r,n), 0<n<r<9

Let § = {S1, S2,...,Sn} be a partition of A. Define a binary relation R
on A by putting

zRy < z,y€S; forsomei=1,2,..,n.

It can be checked that R is an equivalence relation on A called the equiva-
lence relation induced by S; and in this way, different partitions of A induce
different equivalence relations on A.

Conversely, given an equivalence relation R on A and a € A, let
[a] = {z € A| zRa}

be the equivalence class determined by a. Then it can be checked that the
set

§={ld]|a€4)
of subsets of A is a partition of A such that the equivalence relation induced
by Sis R.
The above discussion shows that there is a bijection between the family
of partitions of A and the family of equivalence relations on A.

It is obvious that a way of distributing r distinct objects 1,2,...,r ton
identical boxes such that no box is empty can be regarded as an n-partition
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of the set A = {1,2,...,7}. Thus, by definition, S(r,n) counts the number
of n-partitions of A, and therefore

r
E S(r,n) = the number of partitions of {1,2,...,7}
n=1

= the number of equivalence relations on {1,2,...,r}.

The sum 3, _, S(r,n), usually denoted by B, , is called a Bell number after
E.T. Bell (1883 — 1960). The first few Bell numbers are:

Bi=1, By=2, Bs=5, By=15, Bs =52, Bs = 203,... .

Exercise 1

1. Find the number of ways to choose a pair {a,b} of distinct numbers
from the set {1,2,...,50} such that

(i) |a—b] =5; (ii) la — b] < 5.
2. There are 12 students in a party. Five of them are girls. In how many
ways can these 12 students be arranged in a row if
(i) there are no restrictions?
(ii) the 5 girls must be together (forming a block)?
(iii) no 2 girls are adjacent?
(iv) between two particular boys A and B, there are no boys but exactly
3 girls?
3. m boys and n girls are to be arranged in a row, where m,n € N. Find
the number of ways this can be done in each of the following cases:
(i) There are no restrictions;
(i) No boys are adjacent (m < n+ 1);
(iii) The n girls form a single block;
(iv) A particular boy and a particular girl must be adjacent.
4. How many 5-letter words can be formed using A, B,C, D, E, F,G, H,
I, J,
(i) if the letters in each word must be distinct?
(ii) if, in addition, A, B,C, D, E, F can only occur as the first, third or
fifth letters while the rest as the second or fourth letters?
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5. Find the number of ways of arranging the 26 letters in the English
alphabet in a row such that there are exactly 5 letters between z and y.

6. Find the number of odd integers between 3000 and 8000 in which no
digit is repeated.

7. Evaluate
1-1142-2143.31+---+n-nl,
where n € N.
8. Evaluate 1 N 9 .. + n
a+nt " @+ (n+1)V
where n € N.

9. Prove that for each n € N,
(n+1)(n+2)---(2n)

is divisible by 2". (Spanish Olympiad, 1985)

10. Find the number of common positive divisors of 10*° and 203°.

11. In each of the following, find the number of positive divisors of n (in-
clusive of n) which are multiples of 3:
(i) n = 210; (ii) n = 630; (iii) » = 151200.

12. Show that for any n € N, the number of positive divisors of n? is always

odd.

13. Show that the number of positive divisors of “111...1” is even.
S e
1992
14. Let n,r € N with r < n. Prove each of the following identities:
() PP =nP,
(ii) P? =(n—r+ )P,
(iii) P* = ;2-P""', where r < n,
(iv) PPt =PP +rPly,
(v) PPt =l (PP + PP 4+ PLy).

15. In a group of 15 students, 5 of them are female. If exactly 3 female
students are to be selected, in how many ways can 9 students be chosen
from the group

(i) to form a committee?
(ii) to take up 9 different posts in a committee?



52 Ezercise 1

16. Ten chairs have been arranged in a row. Seven students are to be seated
in seven of them so that no two students share a common chair. Find
the number of ways this can be done if no two empty chairs are adjacent.

17. Eight boxes are arranged in a row. In how many ways can five distinct
balls be put into the boxes if each box can hold at most one ball and
no two boxes without balls are adjacent?

18. A group of 20 students, including 3 particular girls and 4 particular
boys, are to be lined up in two rows with 10 students each. In how
many ways can this be done if the 3 particular girls must be in the front
row while the 4 particular boys be in the back?

19. In how many ways can 7 boys and 2 girls be lined up in a row such that
the girls must be separated by exactly 3 boys?

20. In a group of 15 students, 3 of them are female. If at least one female
student is to be selected, in how many ways can 7 students be chosen
from the group

(i) to form a committee?
(ii) to take up 7 different posts in a committee?

21. Find the number of (m + n)-digit binary sequences with m 0’s and n
1’s such that no two 1’s are adjacent, where n < m + 1.

22. Two sets of parallel lines with p and ¢ lines each are shown in the
following diagram:

llll

SENEEEN

[ ][]

[T
q

\

-

Find the number of parallelograms formed by the lines?

23. There are 10 girls and 15 boys in a junior class, and 4 girls and 10 boys
in a senior class. A committee of 7 members is to be formed from these
2 classes. Find the number of ways this can be done if the committee
must have exactly 4 senior students and exactly 5 boys.
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24. A box contains 7 identical white balls and 5 identical black balls. They
are to be drawn randomly, one at a time without replacement, until the
box is empty. Find the probability that the 6th ball drawn is white,
while before that exactly 3 black balls are drawn.

25. In each of the following cases, find the number of shortest routes from
O to P in the street network shown below:
P

o

(i) The routes must pass through the junction A;

(ii) The routes must pass through the street AB;
(iii) The routes must pass through junctions A and C;
(iv) The street AB is closed.

26. Find the number of ways of forming a group of 2k people from n couples,
where k,n € N with 2k < n, in each of the following cases:

(i) There are k couples in such a group;
(if) No couples are included in such a group;
(iii) At least one couple is included in such a group;

(iv) Exactly two couples are included in such a group.

27. Let S ={1,2,...,n+ 1} where n > 2, and let
T={(z,9,2)€S®|2<z and y<z}

Show by counting |T'| in two different ways that
n
k=1
28. Consider the following set of points in the  — y plane:

A={(a,b)]|a,b€Z,0<a<9 and 0<b<L5}
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Find
(i) the number of rectangles whose vertices are points in 4;

(ii) the number of squares whose vertices are points in A.

29. Fifteen points P;, P,,...,P;5 are drawn in the plane in such a way
that besides P;, P,, Ps, P4, Ps which are collinear, no other 3 points are
collinear. Find

(i) the number of straight lines which pass through at least 2 of the 15
points;

(ii) the number of triangles whose vertices are 3 of the 15 points.

30. In each of the following 6-digit natural numbers:
333333, 225522, 118818, 707099,

every digit in the number appears at least twice. Find the number of
such 6-digit natural numbers.

31. In each of the following 7-digit natural numbers:
1001011, 5550000, 3838383, 7777777,

every digit in the number appears at least 3 times. Find the number of
such 7-digit natural numbers.

32. Let X = {1,2,3,...,1000}. Find the number of 2-element subsets {a,b}
of X such that the product a - b is divisible by 5.

33. Consider the following set of points in the £ — y plane:

A={(a,b)|a,b€Z and |a|+|b| <2}.

Find

(i) |Af;

(i1) the number of straight lines which pass through at least 2 points in
A; and

(iii) the number of triangles whose vertices are points in A.

34. Let P be a convex n-gon, where n > 6. Find the number of triangles
formed by any 3 vertices of P that are pairwise nonadjacent in P.



Chapter 1. Permutations and Combinations 55

35. 6 boys and 5 girls are to be seated around a table. Find the number of
ways that this can be done in each of the following cases:

(i) There are no restrictions;
(if) No 2 girls are adjacent;
(i) All girls form a single block;
(iv) A particular girl G is adjacent to two particular boys B; and Bs.
36. Show that the number of r-circular permutations of n distinct objects,
where 1 < r < n, is given by (n—_"T'),—;

37. Let k,n € N. Show that the number of ways to seat kn people around
k distinct tables such that there are n people in each table is given by

G
)

38. Let » € N such that

Find the value of r.

39. Prove each of the following identities:

n nfn-1
(a) (r) —;(r_1>,wheren2r21)

(b) (n)zutl( n ),whereanZl;
r r—1

r

(c) (n)= n <n_1>,wheren>r20;
r n—r\ r

@ () - ()7

40. Prove the identity (7) = (,",) by (BP).

41. Let X = {1,2,..,n}, A={AC X |n¢ A},and B={AC X |n € A}.
Show that |A| = |B| by (BP).

42. Let r,n € N. Show that the product

(n+1D(n+2)---(n+r)

of r consecutive positive integers is divisible by 7!.

43. Let A be a set of kn elements, where k,n € N. A k-grouping of A is
a partition of A into k-element subsets. Find the number of different
k-groupings of A.
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44.

45.

46.
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Twenty five of King Arthur’s knights are seated at their customary
round table. Three of them are chosen — all choices of three being
equally likely — and are sent off to slay a troublesome dragon. Let P be
the probability that at least two of the three had been sitting next to
each other. If P is written as a fraction in lowest terms, what is the sum
of the numerator and denominator? (AIME, 1983/7) (Readers who wish
to get more information about the AIME may write to Professor Walter
E. Mientka, AMC Executive Director, Department of Mathematics &
Statistics, University of Nebraska, Lincohn, NE 68588-0322, USA.)

One commercially available ten-button lock may be opened by depress-
ing — in any order — the correct five buttons. The sample shown below
has {1,2,3,6,9} as its combination. Suppose that these locks are re-
designed so that sets of as many as nine buttons or as few as one button
could serve as combinations. How many additional combinations would
this allow? (AIME, 1988/1)

© 00 N O™

JUBEE
JAUUE

10

In a shooting match, eight clay targets are arranged in two hanging
columns of three each and one column of two, as pictured. A marksman
is to break all eight targets according to the following rules: (1) The
marksman first chooses a column from which a target is to be broken. (2)
The marksman must then break the lowest remaining unbroken target
in the chosen column. If these rules are followed, in how many different
orders can the eight targets be broken? (AIME, 1990/8)
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Using the numbers 1, 2, 3, 4, 5, we can form 5!(= 120) 5-digit numbers
in which the 5 digits are all distinct. If these numbers are listed in
increasing order:

12345, 12354, 12435, ..., 54321,
1st 2nd 3rd 120th

find (i) the position of the number 35421; (ii) the 100th number in the
list.

The Pj(= 24) 3-permutations of the set {1,2,3,4} can be arranged in
the following way, called the lexicographic ordering:

123, 124, 132, 134, 142, 143, 213, 214, 231, 234,

241, 243, 312, ..., 431, 432.
Thus the 3-permutations “132” and “214” appear at the 3rd and
8th positions of the ordering respectively. There are PJ(='3024) 4-
permutations of the set {1,2,..,9}. What are the positions of the °

4-permutations “4567” and “5182” in the corresponding lexicographic
ordering of the 4 permutations of {1,2,...,9}7?

The (g) (= 10) 3-element subsets of the set {1,2,3,4,5} can be arranged
in the following way, called the lexicographic ordering:

{1’ 2) 3}? {1’ 2’ 4}’ {1) 2’ 5}’ {1’ 3) 4}) {1; 3) 5}) {1) 4’ 5}’
{2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}.
Thus the subset {1,3,5} appears at the 5th position of the ordering.
There are (') 4-element subsets of the set {1,2, ..., 10}. What are the
positions of the subsets {3,4,5,6} and {3,5,7,9} in the corresponding
lexicographic ordering of the 4-element subsets of {1,2,...,10}?
Six scientists are working of a secret project. They wish to lock up
the documents in a cabinet so that the cabinet can be opened when
and only when three or more of the scientists are present. What is the

smallest number of locks needed? What is the smallest number of keys
each scientist must carry?

A 10-storey building is to be painted with some 4 different colours such
that each storey is painted with one colour. It is not necessary that all
4 colours must be used. How many ways are there to paint the building
if

(i) there are no other restrictions?

(ii) any 2 adjacent stories must be painted with different colours?



58 Ezercise 1

52. Find the number of all multi-subsets of M = {ry -aj1,72-a2,--+,7n -an}.

53. Let r,b € N with » < n. A permutation z,z,:--z3, of the set
{1,2,...,2n} is said to have property P(r) if |z; — zi41| = r for at
least one ¢ in {1,2,...,2n — 1}. Show that, for each n and r, there are
more permutations with property P(r) than without.

54. Prove by a combinatorial argument that each of the following numbers
is always an integer for each n € N:

. 3n)!
(l) 2m . )
(@) g o
n2)!
(1i1) ATy
(iv) (n!)ni_!l 7.

55. Find the number of r-element multi-subsets of the multi-set
M ={1-a1,00-az,00-as,...,00-an}.

56. Six distinct symbols are transmitted through a communication channel.
A total of 18 blanks are to be inserted between the symbols with at
least 2 blanks between every pair of symbols. In how many ways can
the symbols and blanks be arranged?

57. In how many ways can the following 11 letters: A, B, C, D, E, F, X,
X, X,Y,Y be arranged in a row so that every Y lies between two X’s
(not necessarily adjacent)?

58. Two n-digit integers (leading zero allowed) are said to be equivalent if
one is a permutation of the other. For instance, 10075, 01057 and 00751
are equivalent 5-digit integers.

(i) Find the number of 5-digit integers such that no two are equivalent.
(i1) If the digits 5,7,9 can appear at most once, how many nonequivalent
5-digit integers are there?
59. How many 10-letter words are there using the letters a,b,¢c,d, e, f if
(i) there are no restrictions?

(ii) each vowel (a and e) appears 3 times and each consonant appears
once?



60

61.

62.

63.

64.

65.

66

Chapter 1. Permutations and Combinations 59

(iii) the letters in the word appear in alphabetical order?

(iv) each letter occurs at least once and the letters in the word appear
in alphabetical order?

. Let r,n,k € N such that » > nk. Find the number of ways of distribut-
ing r identical objects into n distinct boxes so that each box holds at
least k objects.

Find the number of ways of arranging the 9 letters r,s,t,u,v,w, z,y,z
in a row so that y always lies between z aqd z (z and y, or y and z need
not be adjacent in the row).

Three girls A, B and C, and nine boys are to be lined up in a row. In
how many ways can this be done if B must lie between A and C, and
A, B must be separated by exactly 4 boys?

Five girls and eleven boys are to be lined up in a row such that from
left to right, the girls are in the order: Gy, G2, Gs, G4,G5. In how many
ways can this be done if G; and G5 must be separated by at least 3
boys, and there is at most one boy between G4 and G5?

Given r,n € N with r > n, let L(r,n) denote the number of ways of
distributing r distinct objects into n identical boxes so that no box is
empty and the objects in each box are arranged in a row. Find L(r,n)
in terms of » and n.

Find the number of integer solutions to the equation:
1+ T3+ 3+ 24+ x5 + 6 = 60

in each of the following cases:
(1) z; >i—1foreachi=1,2,...6;
(i) 21>2,22>5,2<2z3<7,24>1,25> 3 and z6 > 2.

. Find the number of integer solutions to the equation:

z1+x2+z3+24=30

in each of the following cases:

(i) z; > 0 for eachi=1,2,3,4;

(ii) 2<z; < 7and z; >0 for each i = 2,3,4;
(iii) z1 > =5, 22> —1, 23> 1 and z4 > 2.
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Find the number of quadruples (w, z,y, z) of nonnegative integers which
satisfy the inequality

w4z +y+z <1992,

Find the number of nonnegative integer solutions to the equation:
521 +z2 + 23+ x4 = 14.

Find the number of nonnegative integer solutions to the equation:
rey + 2o+ -+ 2z, = kr,

where k,r,n € N.

Find the number of nonnegative integer solutions to the equation:
3zy + 5z9 + x3 + x4 = 10.

Find the number of positive integer solutions to the equation:

(z1+z2+23)(y1 +y2 +ys+ys) =77,
Find the number of nonnegative integer solutions to the equation:

(T1+z2+- 4 2)(+y2 4+ +y)=p,

where n € N and p is a prime.

There are 5 ways to express “4” as a sum of 2 nonnegative integers in
which the order counts:

4=44+0=34+1=24+2=14+3=0+4.

Given r,n € N, what is the number of ways to express r as a sum of n
nonnegative integers in which the order counts?

There are 6 ways to express “5” as a sum of 3 positive integers in which
the order counts:

5=3+14+1=24241=24142=143+1=142+2=1+1+3.

Given r,n € N with » > n, what is the number of ways to express r as
a sum of n positive integers in which the order counts?
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A positive integer d is said to be ascending if in its decimal representa-
tion: d = dydin—-1 ...dad; we have

0<dp<dn-1<---<dy<dy.

For instance, 1337 and 2455566799 are ascending integers. Find the
number of ascending integers which are less than 10°.

A positive integer d is said to be strictly ascending if in its decimal
representation: d = d;,dy,—1 . ..d2d; we have

0<dn<dn-1<---<ds<ds.

For instance, 145 and 23689 are strictly ascending integers. Find the
number of strictly ascending integers which are less than (i) 10°, (ii)
108.

Let A= {1,2,...,n}, where n € N.

(1) Given k € A, show that the number of subsets of A in which k is
the maximum number is given by 2F-1.

(ii) Apply (i) to show that

n—1
dYr=2r-1

=0

In a given circle, n > 2 arbitrary chords are drawn such that no three are
concurrent within the interior of the circle. Suppose m is the number of
points of intersection of the chords within the interior. Find, in terms
of n and m, the number r of line segments obtained through dividing
the chords by their points of intersection. (In the following example,
n=>5m=3andr=11)

(.
\§
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79. There are p > 6 points given on the circumference of a circle, and every
two of the points are joined by a chord.

(1) Find the number of such chords.
Assume that no 3 chords are concurrent within the interior of the circle.

(i) Find the number of points of intersection of these chords within the
interior of the circle.

(iii) Find the number of line segments obtained through dividing the
chords by their points of intersection.

(iv) Find the number of triangles whose vertices are the points of inter-
section of the chords within the interior of the circle.

80. In how many ways can n + 1 different prizes be awarded to n students
in such a way that each student has at least one prize?

81. (a) Let n,m,k € N, and let N = {1,2,...,k}. Find
(i) the number of mappings from N, to Np,.
(ii) the number of 1-1 mappings from N, to N,,, where n < m.
(b) A mapping f : N, — N,, is strictly increasing if f(a) < f(b)
whenever a < b in N,,. Find the number of strictly increasing mappings
from N, to N,,, where n < m.

(c) Express the number of mappings from N, onto N,, in terms of
S(n,m) (the Stirling number of the second kind).

82. Given r,n € Z with 0 < n < r, the Stirling number s(r,n) of the
first kind is defined as the number of ways to arrange r distinct objects

around n identical circles such that each circle has at least one object.
Show that

@) s(r,1)=(r—1)!forr>1;
(i) s(r2)=(r-1)A+3+1+ -+ L) forr>2
(i) s(r,r—1)= (}) forr > 2;
(iv) s(r,r—2) = 5r(r—1)(r — 2)(3r — 1) for r > 2;
(V) Thos(r,m) =11,
83. The Stirling numbers of the first kind occur as the coefficients of =" in
the expansion of

z(z+1)(z+2)---(z+r—1).
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For instance, when r = 3,
z(z +1)(z+2) =22 + 32> + 23
= 5(3,1)z + 5(3,2)z? + 5(3,3)z?;

and when r =5,

z(z +1)(z + 2)(z + 3)(z + 4)
= 24z + 5022 + 352° + 10z* + 2°
= 5(5,1)z + 5(5,2)z2 + 5(5,3)z> + 5(5,4)z* + 5(5, 5)z5.
Show that

z(z+1)(z+2)---(z+r—-1)= Zs(r,n)m”,

n=0
where r € N.
84. Given r,n € Z with 0 < n < r, the Stirling number S(r,n) of the second

kind is defined as the number of ways of distributing r distinct objects
into n identical boxes such that no box is empty. Show that

@) S(r,2)=2""1-1;
(i) S(r3)=31(3"1+1)—-2r"1;
(iii) S(r,r—1)=(3);
(iv) S(r,r—2)=(5) +3(3).
85. Let (z)o =1 and for n € N, let

@Em=2(z-1)(z—2)---(x—n+1).

The Stirling numbers of the second kind occur as the coefficients of (z),
when z" is expressed in terms of (z),’s. For instance, when r = 2,3 and
4, we have, respectively,
=z +z(z—1)=(z)1 + ()2
= 5(2,1)(=); + S(2,2)(z)2,
?=z+3z(z-1)+z(z—1)(z—2)
= S(3,1)(z)1 + S(3,2)(x)2 + S(3,3)(z)a,
2t =z + Tz(z — 1) + 62(z — 1)(z — 2) + z(z — 1)(z — 2)(z — 3)
= 5(4,1)(z)1 + S(4,2)(z)2 + S(4,3)(z)s + S(4,4)(z)a-
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86.

87.

88.

89.

90.

FEzercise 1

Show that for »=0,1,2,...,

2" =Y S(r,n)(2)n.

n=0

Suppose that m chords of a given circle are drawn in such a way that no
three are concurrent in the interior of the circle. If n denotes the number
of points of intersection of the chords within the circle, show that the
number of regions divided by the chords in the circle is m +n + 1.

For n > 4, let r(n) denote the number of interior regions of a convex
n-gon divided by all its diagonals if no three diagonals are concurrent
within the n-gon. For instance, as shown in the following diagrams,
r(4) = 4 and r(5) = 11. Prove that r(n) = () + (*31).

Let n € N. How many solutions are there in ordered positive integer
pairs (z,y) to the equation

i J =n?
z+y

(Putnam, 1960)

Let S = {1,2,3,...,1992}. In each of the following cases, find the number
of 3-element subsets {a,b,c} of S satisfying the given condition:

() 3l(a+b+c);
(ii) 4)(a+b+c).

A sequence of 15 random draws, one at a time with replacement, is
made from the set
{4,B,C,...,X,Y,Z}

of the English alphabet. What is the probability that the string:

UNIVERSITY

occurs as a block in the sequence?



91.

92.

93.

94.

95.

96.

Chapter 1. Permutations and Combinations 65

A set S = {a1,0as,...,a,} of positive integers, where r € N and a; <
az < ... < ay, is said to be m-separated (m € N) if a; — a;_; > m, for
each i =2,3,..,r. Let X = {1,2,...,n}. Find the number of r-element
subsets of X which are m-separated, where 0 < r < n—(m—1)(r —1).

Let a;,as,...,a, be positive real numbers, and let S be the sum of
products of ai,as,...,a, taken k at a time. Show that

2
SkSn—k 2 (Z) a1a3 - Gp,

for k=1,2,...,n — 1. (APMO, 1990)

For {1,2,3,...,n} and each of its nonempty subsets, a unique alternat-
ing sum is defined as follows: Arrange the numbers in the subset in
decreasing order and then, beginning with the largest, alternately add
and subtract successive numbers. (For example, the alternating sum for
{1,2,4,6,9}is9—-6+4—2+1 =6 and for {5} it is simply 5.) Find
the sum of all such alternating sums for n = 7. (AIME, 1983/13)

A gardener plants three maple trees, four oak trees and five birch trees
in a row. He plants them in random order, each arrangement being

m

equally likely. Let 2 in lowest terms be the probability that no two

n

birch trees are next to one another. Find m + n. (AIME, 1984/11)

In a tournament each player played exactly one game against each of
the other players. In each game the winner was awarded 1 point, the
loser got 0 points, and each of the two players earned 1/2 point if the
game was a tie. After the completion of the tournament, it was found
that exactly half of the points earned by each player were earned in
games against the ten players with the least number of points. (In
particular, each of the ten lowest scoring players earned half of her/his
points against the other nine of the ten). What was the total number
of players in the tournament? (AIME, 1985/14)

Let S be the sum of the base 10 logarithms of all of the proper divisors of
1,000,000. (By a proper divisor of a natural number we mean a positive
integral divisor other than 1 and the number itself.) What is the integer
nearest to S? (AIME, 1986/8)
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97.

98.

99.

100.

101.

102.

103.

Ezercise 1

In a sequence of coin tosses one can keep a record of the number of
instances when a tail is immediately followed by a head, a head is im-
mediately followed by a head, etc.. We denote these by TH, HH, etc..
For example, in the sequence HHTTHHHHTHHTTTT of 15 coin
tosses we observe that there are five HH, three HT, two TH and four
TT subsequences. How many different sequences of 15 coin tosses will
contain exactly two H H, three HT', four TH and five T'T subsequences?
(AIME, 1986/13)

An ordered pair (m, n) of non-negative integers is called “simple” if the
addition m + n in base 10 requires no carrying. Find the number of
simple ordered pairs of non-negative integers that sum to

(1) 1492; (AIME, 1987/1) (i1) 1992.

Let m/n, in lowest terms, be the probability that a randomly chosen
positive divisor of 10%° is an integer multiple of 10%8. Find m + n.
(AIME, 1988/5)

A convex polyhedron has for its faces 12 squares, 8 regular hexagons, and
6 regular octagons. At each vertex of the polyhedron one square, one
hexagon, and one octagon meet. How many segments joining vertices
of the polyhedron lie in the interior of the polyhedron rather than along
an edge or a face? (AIME, 1988/10)

Someone observed that 6! = 8 -9 -10. Find the largest positive integer
n for which n! can be expressed as the product of n — 3 consecutive
positive integers. (AIME, 1990/11)

Let S = {1,2,...,n}. Find the number of subsets A of S satisfying the
following conditions:
A ={a,a+d,...,a+kd} for some positive integers a,d and k, and

AU {z} is no longer an A.P. with common difference d for each
z€eS\A

(Note that |A| > 2 and any sequence of two terms is considered as an
A.P.) (Chinese Math. Competition, 1991)

Find all natural numbers n > 1 and m > 1 such that
11315!- .. (2n — 1) = m! .

(Proposed by I. Cucurezeanu, see Amer. Math. Monthly, 94 (1987),
190.)
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Show that for n € N,

ZP” = |nle],

r=0
where |z] denotes the greatest integer < z and e = 2.718 - -. (Proposed
by D. Ohlsen, see The College Math. J. 20 (1989), 260.)

Let S = {1,2,..,1990}. A 31-element subset A of S is said to be good
if the sum ) , a is divisible by 5. Find the number of 31-element
subsets of S which are good. (Proposed by the Indian Team at the 31st
IMO.)

Let S be a 1990-element set and let P be a set of 100-ary sequences
(a1, az, ..., a100), where a;’s are distinct elements of S. An ordered pair
(z,y) of elements of S is said to appear in (a1, a2, ..., a100) if = a; and
y = a; for some 4,5 with 1 <4 < j < 100. Assume that every ordered
pair (z,y) of elements of S appears in at most one member in P. Show
that
[P| < 800.
(Proposed by the Iranian Team at the 31st IMO.)

Let M = {ry-a1,7r2-a3,...,Ty an} be a multi-set with 7y +r3+---+r, =
r. Show that the number of r-permutations of M is equal to the number
of (r — 1)-permutations of M.

Prove that it is impossible for seven distinct straight lines to be situated
in the Euclidean plane so as to have at least six points where exactly
three of these lines intersect and at least four points where exactly two
of these lines intersect. (Putnam, 1973)

For what n € N does there exist a permutation (z3,z2,...,25,) of
(1,2, ...,n) such that the differences |zx — k|, 1 < k < n, are all dis-
tinct? (Prosposed by M.J. Pelling, see Amer. Math. Monthly, 96
(1989), 843-844.)

Numbers d(n, m), where n,m are integers and 0 < m < n, are defined
by
d(n,0)=d(n,n) =1 foralln>0
and
m-d(n,m)=m-dn—-1,m)+(2n—m)-d(n—-1,m-1)

for 0 < m < n. Prove that all the d(n,m) are integers. (Great Britian,
1987)
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Ezercise 1

A difficult mathematical competition consisted of a Part I and a Part
II with a combined total of 28 problems. Each contestant solved 7
problems altogether. For each pair of problems, there were exactly two
contestants who solved both of them. Prove that there was a contestant

who, in Part I, solved either no problems or at least four problems. (USA
MO, 1984/4)

Suppose that five points in a plane are situated so that no two of the
straight lines joining them are parallel, perpendicular, or coincident. -
From each point perpendiculars are drawn to all the lines joining the
other four points. Determine the maximum number of intersections that
these perpendiculars can have. (IMO, 1964/5)

Let n distinct points in the plane be given. Prove that fewer than 2n?
pairs of them are at unit distance apart. (Putnam, 1978)

If ¢ and m are positive integers each greater than 1, find the number
n(c,m) of ordered c-tuples (ny,ns,...,n.) with entries from the initial
segment {1,2,...,m} of the positive integers such that ny < n; and
nzg < ng < --- < n,. (Proposed by D. Spellman, see Amer. Math.
Monthly, 94 (1987), 383-384.)

Let X = {z1,22,...,2m}, Y = {y1,¥2,...,Un} (m,n € N) and A C
X xY. For z; € X, let

A(:vi, ) = ({x;} X Y) nA
and for y; €Y, let
A(hy) = (X x{y;H N A

(i) Prove the following Fubini Principle:
m n
Y A, = A= D IAG y)l-
i=1 j=1 '

(ii) Using (i), or otherwise, solve the following problem: There are n > 3
given points in the plane such that any three of them form a right-
angled triangle. Find the largest possible value of n.

(23rd Moscow MO)



Chapter 2

Binomial Coefficients and
Multinomial Coefficients

2.1. Introduction

Given r,n € Z with 0 < r < n, the number (?) or C* was defined in
Chapter 1 as the number of r-element subsets of an n-element set. For
convenience, we further define that (7) = 0 if r > n or r < 0. Hence, by
the result of (1.4.1), we have:

(’:)={W&l—r—)7 ifo<r<n,

0 ifr>norr<0,

for any r,n € Z with n > 0.

In Chapter 1 and Exercise 1, we have learnt some basic identities gov-
erning the numbers (:) ’s. These useful identities are summarized in the

0-(.2)
)

=2 (" - l) provided that r > 1 (2.1.2)

following list:

(

( ) ) provided that r>1  (2.1.3)
(:) - (:: :) + (n: 1) (2.1.4)
(:t) (T) = (:) (:1—_:) (2.1.5)
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The numbers (:) ’s are perhaps the most important and significant num-
bers in enumeration, and are often called binomial coefficients since they ap-
pear as the coefficients in the expansion of the binomial expression (z+y)".
In this chapter, we shall derive some more fundamental and useful identi-
ties involving the binomial coeflicients. Various techniques employed in the
derivation of these identities will be discussed. We shall also introduce and
study the notion of multinomial coefficients that are generalizations of the
binomial coefficients.

2.2. The Binomial Theorem

We begin with the following simplest form of the binomial theorem discov-
ered by Issac Newton (1646-1727) in 1676.

Theorem 2.2.1. For any integer n > 0,

(z+y)" = (g)zﬂ + (Y)zn-ly 4ot (n '1 l)zyn-l + (:)yn

_g() e

First proof — mathematical induction. For n = 0, the result is
trivial as (z + y)° = 1 = (J)z°y°. Assume that it holds when n = k for
some integer k > 0, that is,

(z+y)= rX:% (’:) Ty

Consider n = k 4+ 1. Observe that
(z+ y)"“ =(z+y)(z+y)*

=(z+y) E ( ) k=ry" (by the inductive hypothesis)

r=0

—Z() - +5’3() —_—

r=0 r=0

< () (Yot (et s (e
Y K P
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Applying (2.1.4) and the trivial results that (f) =1= (*}!) and (}) = 1=

(:’_ﬁ), we have

k+1 k+1 k+1 k+1
k41 _ k41 koo k k41
(z+y) —( 0 )1‘ +( 1 )z y+ +( k )zy +(k+l)y

as desired. The result thus follows by induction. g

Second proof — combinatorial method. It suffices to prove that
the coefficient of z"~"y" in the expansion of (z + y)" is (7).

To expand the product (z+y)" = (z+y)(z+y)---(z + y), we choose

either z or y from each factor (z + y) and then ;'nultiply them together.
Thus to form a term z"~"y", we first select r of the n factors (z + y) and
then pick “y” from the r factors chosen (and of course pick “z” from the
remaining (n — r) factors). The first step can be done in () ways while
the second in 1 way. Thus, the number of ways to form the term z"~"y" is
(%) as required. g

2.3. Combinatorial Identities

The binomial theorem is a fundamental result in mathematics that has
many applications. In this section, we shall witness how Theorem 2.2.1
yields easily a set of interesting identities involving the binomial coefficients.
For the sake of comparison, some alternative proofs of these identities will
be given.

Example 2.3.1. Show that for all integers n >0,
Z [n n n n "
; (r) = (0) + (1) +- 4 (n) =2" (2.3.1)

First proof. By letting £ = y = 1 in Theorem 2.2.1, we obtain

immediately
n

Z(:‘) =(1+1)"=2". ¢

r=0



72 Section 2.8. Combinatorial Identities

Second proof. Let X be an n-element set and P(X) be the set of all
subsets of X. We shall count |P(X)| in two ways.

For each r = 0,1,...,n, the number of r-element subsets of X is (:) by

definition. Thus
n n n
[P(X)| = (0) + (l) +-- 4+ (n)

On the other hand, by the result of Example 1.5.2, |P(X)| = 2". The
identity thus follows. g

Example 2.3.2. Show that for all integers n > 1,

0 Trao- () = @) - O +G) -+ D" =0 (232
() Q)+ @)+ + @)+ = D+E)++Gha) +- = 27233)

Proof. By letting £ =1 and y = —1 in Theorem 2.2.1, we obtain

> (7 =a-v=o

r=0
which is (i). The identity (ii) now follows from (i) and identity (2.3.1). g

Remark. A subset A of a non-empty set X is called an even-element
(resp. odd-element) subset of X if |A| is even (resp. odd). Identity (2.3.3)
says that given an n-element set X, the number of even-element subsets
of X is the same as the number of odd-element subsets of X. The reader
is encouraged to establish a bijection between the family of even-element
subsets of X and that of odd-element subsets of X (see Problem 2.10).

Example 2.3.3. Show that for all integers n € N,

gr(t) = (Tl') +~2(T2') +3(g> + +n(:) =n-2""1.  (234)
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First proof. Letting £ = Lin Theorem 2.2.1 yields

(I+y"= g (:)y'.

Differentiating both sides of the above identity with respect to y gives

n(l+y)"" = Zn: r(:) Y

r=1
Finally, by putting y = 1, we have

n

Zr(:) =n(l+1)"t=n-2"" g

r=1

Second proof. Identity (2.1.2) can be rewritten as

Remark. Extending the techniques used in the two proofs above, one
can also show that

n
Z r? (n) =n(n+ 1)2""2,
r=1 r

= n
Z 7.3( ) =n%(n+3)2"3
r=1 r

for all n € N (see Problem 2.47).
In general, what can be said about the summation
n
()
r=1 r
where k € N and k > 4 (see Problem 2.48)7

The next result was published by the French mathematician A.T. Van-
dermonde (1735-1796) in 1772.
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Example 2.3.4. (Vandermonde’s Identity) Show that for all
m,n,r €N,

M) -GO+OC) -+ (6

= (’" ;f ") . (2.3.5)

First proof. Expanding the expressions on both sides of the identity
(14 2™ = (L4 2)"(1+2)",
we have by Theorem 2.2.1,

5 (1)

k=0

E6)) (£0)-)

-(0)E)+{E)E)+ ()6}
AV (D)) + (D))} s (7))o

Now, comparing the coefficients of " on both sides yields
m+n\ (m)(n + m n N m\ (n
r “\0/\r 1)\r-1 rJ\o) ®

Second proof. Let X = {a1,a2,...,am,b1,b2,...,b,} be aset of m+n
objects. We shall count the number of r-combinations A of X.

Assuming that A contains exactly i a’s, where ¢ = 0,1,...,r, then the
other r — ¢ elements of A are b’s; and in this case, the number of ways to
form A is given by (7)(.",). Thus, by (AP), we have

> (D)= (")
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Remark. If we put m = n = r in identity (2.3.5) and apply iden-
tity (2.1.1), we obtain the following

,Z:; (1:)2 - (8)2+ (71‘)2 +oot (2)2 = (2:) (2.3.6)

We now give an example to show an application of the Vandermonde’s
identity. In Section 1.6, we showed that H, the number of r-element
multi-subsets of M = {00 - a;,00-ay,...,00-a,}, is given by

-1
H;,=(r+: )

Consider the following 3 x 3 matrix A whose entries are H'’s:
H{ H; Hj;
A= | H} H? HI|.
H} H} H3
What is the value of the determinant det(A) of A? We observe that
G @Oy (111
A= (é) (3) (g) =123 4
@ G 6 3 6 10
and it is easy to check that det(A) = 1.

In general, we have the following interesting result, which can be found
in [N] (pp.167 and 256).

Example 2.3.5. Let A = (HP) be the square matrix of order k, where
n,r € {1,2,...,k}, in which the (n,r)-entry is H. Show that det(A4) = 1.

Proof. Let B = (b;;) and C = (c;;) be the square matrices of order k

defined by
i j-1
=) e w=(20)

(i) 0 0 --- 0
@ G 0o -0
B=|Q G @ - o0

O 66 -6

ie.,

and
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HINGINC
0 (o) (1) (k:2

c=|10 0o () - (3
0 0 0 - (*3)

Claim. A = BC.
Indeed, if a,, denotes the (n,r)-entry of the product BC, then

k k
-1
o ] ()
i=1

i=1

-2 ()=o)

= (r + : - l) (by Vandermonde’s identity)
= H}.

Thus, BC = A, as claimed.

Now,

det(A) = det(BC) = det(B) det(C)
=[0G @] 16) @) ()]
2.4. The Pascal’s Triangle

The set of binomial coefficients ('r') ’s can be conveniently arranged in a
triangular form from top to bottom and left to right in increasing order of
the values of n and r respectively, as shown in Figure 2.4.1. This diagram,
one of the most influential number patterns in the history of mathematics,
is called the Pascal triangle, after the renown French mathematician Blaise
Pascal (1623-1662) who discovered it and made significant contributions
to the understanding of it in 1653. The triangle is also called Yang Hui’s
triangle in China as it was discovered much earlier by the Chinese math-
ematician Yang Hui in 1261. The same triangle was also included in the
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Figure 2.4.1.

Figure 2.4.2.

book “Precious Mirror of the Four Elements” by another Chinese mathe-
matician Chu Shih-Chieh in 1303. For the history of the Pascal’s triangle,
the reader may refer to the book [E].

‘We now make some simple observations with reference to Figure 2.4.2.
(1) The binomial coefficient (), located at the nth level from the top and
rth position from the left, is the number of shortest routes from the top

vertex representing (g) to the vertex representing ('r‘) This is identical
to what we observed in Example 1.5.1.

77
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(2) As (*) = (,*,), the entries of the triangle are symmetric with respect
to the vertical line passing through the vertex (J).

(3) Identity (2.3.1) says that the sum of the binomial coefficients at the n*®
level is equal to 2", and identity (2.3.6) says that the sum of the squares
of the binomial coefficients at the n*! level is equal to (2:)

(4) Identity (2.1.4), namely (?) = (?Z]) + (*;'), simply says that each
binomial coefficient in the interior of the triangle is equal to the sum of
the two binomial coefficients on its immediate left and right “shoulders”.
For instance, 21 = 15 + 6 as shown in Figure 2.4.2.

2.5. Chu Shih-Chieh’s Identity

We proceed with another observation in Figure 2.4.2. Consider the 5 con-
secutive binomial coefficients:

-1 ()0 ()i} -

along the NE line when r = 2 from the right side of the triangle as shown.
The sum of these 5 number is 1 + 3 + 6 + 10 + 15 = 35, which is the
immediate number we reach after turning left from the route 1-3-6-10-15.
Why is this so? Replacing (2) by (§) (they all equal 1) and applying the
above observation (4) successively, we have

0+ () (9+0)+()
-0+ 0+0+6)+0
)

4

)
07000
)

+
TN
D
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Evidently, this argument can be used in a general way to obtain the
following identity (2.5.1), which was also discovered by Chu Shih-Chieh in
1303.

Example 2.5.1. Show that

0 ()e(2)e40)

for all ,n € N with n > r;

(i) (g) + (rfl) Foot (r:k) = (“’:“) (2.5.2)

for all r,k € N.

(’:ID (25.1)

Identities (2.5.1) and (2.5.2) can be remembered easily with the help of
the patterns as shown in Figure 2.5.1. Due to the symmetry of the Pascal’s
triangle, identities (2.5.1) and (2.5.2) are equivalent; i.e., (2.5.1) & (2.5.2).

. (:) NG RN
. ({.) ’ ‘ (;)

O

o T e

....‘.."(:I:).,‘:. (+:+1)

Figure 2.5.1.

We now give a combinatorial proof for identity (2.5.1).
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Proof of (i). Let X = {a;,a2,...,8n41-r,...,an41} be a set of n + 1
elements. We shall count the number of (r + 1)-element subsets A of X.
Consider the following n + 1 — r cases:

(1): a1 € A. We need another r elements from X\{a;} to form
A. There are (:,') ways that A can be formed.

(2): a1 ¢ A and a2 € A. We need another r elements from
X\{a1, az} to form A. There are (":1) ways that A can be
formed.

(n—r): a1,a2,...,an-1-r ¢ A and a,_, € A. We need another r
elements from X\{a1,az,...,an—,} to form A. There are
((""'1):("")) = (",','1) ways that A can be formed.
(n+1-r): a1,83,..,8n—r ¢ A. In this case, there is ([) = 1 way to
form A, namely, A = {@n—r4+1,8n-r42,-y Gn41}-
We note that all the above n + 1 — r cases are pairwise disjoint and
exhaustive. Thus we have by (AP),

() (7)) ()= C10)
r r r r r+1
proving identity (2.5.1). g

We shall present two examples showing some applications of iden-
tity (2.5.1).

Example 2.5.2. (IMO, 1981/2) Let 1 < r < n and consider all -
element subsets of the set {1,2,...,n}. Each of these subsets has a smallest
member. Let F(n,r) denote the arithmetic mean of these smallest numbers.

Prove that
n+1

r+1°

F(n,r) =

Before proving the result, we give an illustrating example to help us
understand the problem better. Take n = 5 and » = 3. All the 3-element
subsets of {1,2,3,4,5} and their respective smallest members are shown in
Table 2.5.1.
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3-element subsets Smallest
of {1,2,3,4,5} members
{1,2,3}
{1,2,4}
{1,2,5}
{1,3,4}
{1,3,5}
{1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{3,4,5}

SO N DY DN = e e e e

Table 2.5.1.

Thus F(5,3) = $5(6-1+3-2+1-3) = 3, while 2 = § = 2, and they

are equal.

Two questions are in order. First, which numbers in the set {1,2,...,n}
could be the smallest members of some r-element subsets of {1,2,...,n}?
How many times does each of these smallest members contribute to the
sum? Observe that {n—r+1,n—r+2,...,n} consists of n—(n—r+1)+1=1r
elements; and it is the r-element subset of {1,2,...,n} consisting of the
largest possible members. Thus the numbers 1,2,...,n — r + 1 are all the
possible smallest members of the r-element subsets of {1,2,...,n}. This
answers the first question. Let m = 1,2,...,n — r + 1. The number of
times that m contributes to the sum is the number of r-element subsets
of {1,2,...,n} which contain m as the smallest member. This, however, is
equal to the number of ways to form (r — 1)-element subsets from the set
{m+1,m+2,..,n}. Thus the desired number of times that m contributes
to the sum is (2_7), which answers the second question. We are now
ready to see how identity (2.5.1) can be applied to prove the statement of
Example 2.5.2.
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Proof. Form = 1,2,...,n — r + 1, the number of r-element subsets
of {1,2,...,n} which contain m as the smallest member is given by ("r:'l"
Thus the sum S of the smallest members of all the r-element subsets of
{1,2,...,n} is given by

S-l( 1) +2("-f)+3("—:1”) +....|.(n_,.+1)(::i)

(oD +GD) 40 +-
+(G2D) 4G +-

+(;21)
+(;23)

r_f) +-- +( ) (n—r+1) TOWS
( )

Applying identity (2.5.1) to each row yields

- ()+(7) (7))

which is equal to (7};), applying (2.5.1) once more. Since the number of
r-element subsets of {1,2, ...,n} is (), it follows that

n+1l
_ Gy . (n+1)! riln—r)! n41
F(n,r) = (":f-)1 TE+D!n—r) T r41

We now consider another example. For n € N, the n'* subdivision of
an equilateral triangle ABC is the configuration obtained by (i) dividing
each side of AABC into n + 1 equal parts by n points; and (ii) adding
3n line segments to join the 3n pairs of such points on adjacent sides so
that the line segments are parallel to the third side. The configurations for
n =1,2,3 are shown in Figure 2.5.2.

A A A

Figure 2.5.2.
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Let g(n) denote the number of parallelograms contained in the nth
subdivision of an equilateral triangle. It can be checked from Figure 2.5.2
that

g(1)=3, g¢(2)=15, and ¢(3)=45.
The general case is discussed below.
Example 2.5.3. For each n € N, evaluate g(n).

Remark. This problem, which can be found, for instance, in [MM],
was given to the trainees in the 1990 Singapore Mathematical Olympiad
Team as a test problem on 15 June, 1989. Lin Ziwei, a member in the team,
of age 14 then, was able to solve the problem within an hour. His solution
is presented below.

Solution. There are 3 types of parallelograms:

(7 0 D

Type 1 Type 2 Type 3

By symmetry, the number of parallelograms.of each type is the same.
Thus we need only to count the number of parallelograms of one type, say
Type 1.

Any parallelogram of Type 1 is formed by 4 line segments £;, €5, £3 and
£4 as shown in Figure 2.5.3.

4

S

/ /[ \
Be— n+1
Figure 2.5.3
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Each side of AABC is of length n + 1 units. When #¢; is r units from
the vertex A, the number of choices for £3 is n + 1 — r, and the number
of ways of choosing the pair {¢3,£s} is ("}'). Thus the total number of
parallelograms of Type 1 is given by

zﬂ:(n+l—r)(r+l)

r=1

Oer Qe Qs (1)
B+ Qe ()1
+()+6)+ ()6
Z)+()
+(3 »
() (") 4+ () + () o ensity @1y

= (n : 3) (by identity (2.5.1) again).

Il

Hence g(n) = 3("}%). a

Remark. Since the above answer for g(n) is a simple binomial coeffi-
cient, one may wonder whether there is any shorter or more direct combi-
natorial argument proving the result. We present one below.

First, extend the sides AB and AC of the equilateral triangle ABC to

B’ and AC' respectively such that 45 = 4C — 242, Thus the nth
subd1v1s10n of AABC is part of the (n + 1)th subdivision of AAB'C’ (see
Figure 2.5.4(a)). Note that including B’ and C’, there are exactly n + 3
subdivision points on B’C’ with respect to the (n + 1)th subdivision of
AAB'C'. Now, observe that any parallelogram of Type 2 in the nth subdi-
vision of AABC corresponds to a unique set of four subdivision points of

B'C’ as shown in Figure 2.5.4(b). It can be shown that this correspondence
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A A
B C B C
B' « n 43 points — C’ B’ c
(a) : (b)

Figure 2.5.4.

is a bijection. Thus by (BP), the number of parallelograms of Type 2 in
the nth subdivision of AABC is equal to the number of 4-element subsets
of the set of n + 3 subdivision points on B'C’. Since the latter is equal to
(*+?), we have g(n) = 3("1). u

2.6. Shortest Routes in a Rectangular Grid

A point (a,b) in the z-y plane is called a lattice point if both a and b are
integers. Figure 2.6.1 shows a rectangular grid in the z-y plane consisting
of (m + 1) x (n + 1) lattice points, and a shortest route from the lattice
point (0,0) to the lattice point (m,n), where m,n € N. It follows from
Example 1.5.1 that the number of shortest routes from (0,0) to (m,n) is
given by (™") or (™).

y
(0,m) §00090009(m,n)
@
AAAAAAA L 4
<4
<
4
<
<
. AA1
1bvvv M
$
on|—%
@
AAA{}
(0,0)] (1,0) (m,0)

Figure 2.6.1.
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In this section, we shall see that the technique of counting shortest
routes between two lattice points in a rectangular grid can serve as a way
of deriving combinatorial identities involving binomial coefficients. To begin
with, we state the following two useful observations, which are related to
Problem 1.25.

1° In Figure 2.6.2, the number of shortest routes from O(0, 0) to A(z,y)

is (“t¥), and the number of shortest routes from A(z,y) to P(m,n)
is ((m=2)+("=¥)) " Thus the number of shortest routes from O(0, 0)
to P(m,n) that pass through A(z,y) is given by

r+y (m—:c)+(n-y).
(o))

P(m,n)

- T
0(0,0)

A=(zy),B=(z+1y)
Figure 2.6.2.

2° In Figure 2.6.2, the number of shortest routes from O(0, 0) to A(z,y)
is (1Y), and the number of shortest routes from B(z + 1,y) to
P(m,n) is (('"'fn'_lzt(l"'”)). Thus the number of shortest routes

from O(0,0) to P(m,n) that pass through the line segment AB is

given by
() (50 ),

As the first example, we derive the Vandermonde’s identity using the
technique of counting shortest routes.
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Example 2.6.1. Show that
m\ [n m n m\ (n m-+n
G +OCE) -+ ()6 =)

where m,n,r € N with m,n > r.

Proof. Consider the rectangular grid shown in Figure 2.6.3.

y

....... : : PRIy . seseneeey P(mgn—r,r)

. A (mimii)
L S

> T

©(0,0) . Ag(m,0) .

Figure 2.6.3.

The number of shortest routes from O(0,0) to P(m + n — r,r) is equal
to
m+n—r+r\ (m+n
T - r )

We now count this number in a different way. Consider the line segment
joining Ag(m,0), A;(m—1,1),..., and A,(m—r,r) as shown in Figure 2.6.3.
We note that each shortest route from O to P passes through one and only
one A; (i = 0,1,..,7) on the line segment. The number of such shortest
routes passing through A;(m — 4,1) is, by observation 1°, given by

(m—.i+i) ((m+n-r-,:.f,i)+(r-i)) _ (m)( ﬁ->~

The identity now follows by (AP). g

The next example makes use of observation 2°.
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Example 2.6.2. Show that for all integers p,q,r > 0,

C30+ )T+ ()
- (P:i':_:'l* 1) = (""'q:""l). (2.6.1)

Proof. Consider the grid shown in Figure 2.6.4.

y
A B,
L P(g+r+1,p)
A; 1 B;
A B
x
0(0,0) Ao B

Ai=(ri), Bi=(r+1,i),i=0,1,..,p

Figure 2.6.4.

The number of shortest routes from 0(0,0) to P(q + r + 1,p) is given
by

p
Another way of counting this number is as follows: Consider the sequence
of unit line segments AgBg, A1 By,...,ApBp, where A; = (r,i) and B; =
(r+1,i),i=0,1,...,p, as shown in Figure 2.6.4. We note that each shortest
route from O to P must pass through one and only one unit line segment
A;B;. The number of such shortest routes passing through A;B; is, by
observation 2°, given by

(r—:i) ((q+r+1-rq—l)+(p—i)) - (fj‘) (P+Z‘i).

Identity (2.6.1) thus follows by (AP). g

From now on, let N = {1,2,...,k}, where k£ € N. In Problem 1.81,
we counted the number of mappings a : N, — N, (n,m € N) that may

(q+r+1+p)
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satisfy some additional conditions. These results are summarized in the
following table.

a:N, = N, Number of o

a is a mapping m"

a is injective (n < m) Pr=mim-1)---(m-n+1)
a is surjective (n > m) m!S(n, m)

a is strictly increasing ™)

Our next aim is to apply the technique of counting shortest routes to
enumerate two special types of mappings.

A mapping o : N, — N, is said to be increasing if a(a) < a(b)
whenever a < b in N,,. The first problem we shall study is the enumeration
of increasing mappings a : N, — N,.

Given an increasing mapping o : N, — N,,, we construct a shortest
route R(a) from (1,1) to (n + 1,m) as follows:

(i) Join (1,1) to (1, (1)) if a(1) > 1;

(ii) Foreachi=1,2,..,n—1,

join (i, a()) to (i + 1,a(i + 1)) if a(i) = a(i + 1),
join (i, a(%)) to (i + 1,a(?)) and (i + 1,a(i)) to (i + 1,a(i + 1)) if
a(i) < ai+1);
(iii) Join (n,a(n)) to (n +1,m) if a(n) = m;

Join (n,a(n)) to (n + 1,a(n)) and (n + 1,a(n)) to (n +1,m) if
a(n) < m.

For instance, if o : N¢ — Nj is the increasing mapping defined in Figure

2.6.5(a), then R(a) is the shortest route shown in Figure 2.6.5(b).

On the other hand, if R is the shortest route form (1,1) to (7,5) as shown
in Figure 2.6.6(a), then R = R(a), where a : N¢ — Nj is the increasing
mapping shown in Figure 2.6.6(b), by reversing the above procedure.

We are now ready to deal with the following:

Example 2.6.3. Show that the number of increasing mappings from
N,, to N, (m,n € N) equals the number of shortest routes from the lattice
point (1,1) to the lattice point (n + 1,m), which is (™*7~7).
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1 aft)
1 2
A 2 2
m=5 = m=
4- " 4 3 3
3 = * ok ok 3 4 3
2= L 2 5 3
1= 1
_ 6 4
ol rrrruorrr- of Yy rrrrru>-
1 2 3 4 5 6=n I 1 2 3 4 5 6 7=n+1
(@) «o (b) R(a)
Figure 2.6.5.
1 aft)
1 1
A 2 3
m=5 = m=5 = *
4+ 4 3 3
3 3= * ok x x 4 3
2 = 2 - 5 3
1= 1= =
> o 6 5
o]l Yy rrvruoou> ol Yy T rruv1
1 2 3 4 5 6 7=n41 1 2 3 4 5 6=n
(a) R (b) «

Figure 2.6.6.

Proof. Let X be the set of increasing mappings  : N,, — N,,, and
Y be the set of shortest routes from (1,1) to (n + 1,m). Define a mapping
f : X =Y by putting for each a € X, f(a) = R(a), which is the shortest
route associated with o as defined above. It can be checked that f is indeed
a bijection between X and Y. Hence we have by (BP),

X| = Y] = ((n+1—1)+(m—l)) _ (n+m—-1).

n n

Remarks. (1) The reader should understand why we choose the
lattice point (n+1, m) but not (n,m) as a terminus in the above argument.
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(2) The answer in Example 2.6.3, which is H = (™*77!), sug-
gests another way to enumerate |X|. Indeed, given an increasing map-
ping o : N, — N,,, there corresponds a unique n-element multi-subset
{a(1),(2), ..., a(n)} of the multi-set M = {c0-1,00-2, ...,00-m} (thus the
mapping of Figure 2.6.5(a) is associated with the 6-element multi-subset
{2-2,3-3,1:4} of M = {00-1,00-2,...,00 -5} and the mapping of Figure
2.6.6(b) is associated with {1-1,4-3,1-5} of M), and conversely, every
n-element multi-subset of M corresponds to a unique increasing mapping
from N, to N,,. The existence of this one-to-one correspondence shows
that | X| = H™.

Let N} = {0} UNj. Our next problem is to enumerate the number of
increasing mappings o : N, — N%_; such that a(a) < a for each a € N,.
First of all, we establish a useful principle about shortest routes in a grid,
called the reflection principle.

Let L:y=xz+k (k € Z) be a line of slope 1 on the z-y plane. Suppose

P and @ are two lattice points on one side of L and P’ is the reflection of
P with respect to L as shown in Figure 2.6.7. Then we have:

Reflection Principle (RP). The number of shortest routes from P
to @ that meet the line L is equal to the number of shortest routes
from P’ to Q.

R(P'SQ)

S
~R(PSQ)

Figure 2.6.7.
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Proof. Let X be the set of shortest routes from P to @ which meet L
and Y be the set of shortest routes from P’ to ). The equality |X| = |Y]|
will be proved by establishing a bijection between X and Y.

Let R(PSQ) be a member in X where S is the first lattice point that
R(PSQ) meets L as it traverses from P to Q (see Figure 2.6.7). Let
R(P'SQ) be the union of (1) the shortest route from P’ to S, which is
the reflection of the portion from P to S in R(PSQ) with respect to L,
and (2) the shortest route from S to Q contained in R(PSQ). Obviously,
R(P’SQ) is a member in Y. It can be checked that the correspondence

R(PSQ) — R(P'SQ)

is indeed a bijection between X and Y. Thus |X| = |Y| and so (RP)
follows. g

Example 2.6.4. Show that the number of increasing mappings « :
N, — Nj_;, n € N, such that a(a) < a is given by 737 (%").

For instance, if n = 3, there are 5—1—1 (g) = 5 such mappings from N3 to
N3. They are exhibited in the table below.

-,

o1(1)  op(i) a3(i)  ou(i) os()

1 0 0 0 0 0
2 0 0 0 1 1
3 0 1 2 1 2

Proof. It follows from the discussion in the proof of Example 2.6.3
that the number of increasing mappings a : N,, — N7 _; such that a(a) < a
is equal to the number of shortest routes from (1,0) to (n+1,n — 1) which
do not meet the line y = z. For convenience, let §; denote this number; and
further let 63 denote the number of shortest routes from (1,0) to (n+1,n—1)
and 63 denote the number of shortest routes from (1,0) to (n +1,n — 1)
which meet the line y = z.

It is clear that §; = §3 — 83 and §; = ((""'1'1')""(”"1)) = (2""'1).
It remains to evaluate §3. First we note that the mirror image of the
lattice point (1,0) with respect to the line y = z is (0,1). Thus by (RP),
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63 is equal to the number of shortest routes from (0,1) to (n + 1,n — 1),
which is given by

= ((n + 1): -(l-nl_ 1- 1)) _ (2::11).

2n -1 2n -1 1 2n
s=t-s= (") - (00) =1 (0) s

Remarks. (1) Both the ideas of (RP) and the above argument are
essentially due to the French combinatorist Désiré André (1840-1917), who
made use of them to solve a problem in 1887, called the ballot problem,
which was posed and also solved by Joseph Louis Francois Bertrand (1822-
1900) in the same year. Readers may refer to the interesting survey article
[BM] for the history and some generalizations of the problem.

(2) The first few terms of the numbers C, = ”L_H(Z:) just obtained
are 1,2,5,14,42,132,429, 1430,... . They are called Catalan numbers af-
ter the Belgium mathematician Eugene Charles Catalan (1814-1894) who
found the sequence of numbers in 1838 when he enumerated the number of
ways of putting brackets in the product z,z - - - z,, of n numbers. (Thus 1
way for n = 2 : (z123); 2 ways for n = 3 : ((z122)%3), (z1(2223)); b ways
for n = 4: (((z122)23)24), ((z1(2223))24), ((2122)(7324)), (z1((z223)24)),
(z1(z2(z3z4))) and so on). Some other problems related to Catalan num-
bers will be discussed in Chapter 6.

Thus,

2.7. Some Properties of Binomial Coefficients

In the previous sections, we studied several identities involving binomial
coefficients and introduced different techniques used to derive them. In
this section, we shall state without proof some useful and striking properties
about the binomial coefficients.

First of all, we have the following unimodal property:

1° For even n € N,

O<@e<(ra(2) Q) o
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and for odd n € N,

n n n n n n
(0> < (1) <--< (,,_2_1_) = (%) >0 > (n—l) > (n) (2.7.2)
2° Let n > 2 be an integer. Mann and Shanks [MS] showed that

nis aprime iff n|(})forallr=1,2,..,n—1

Recently, this result has been improved by Z. Hao who showed (via private
communication) that an integer n > 2 is prime iff

n
6kx1)’

for all k with 1 < k < [3?], where |z| denotes the greatest integer not
exceeding the real number z.

3° For a,b,c € Z, we write a = b (mod ¢) iff ¢ | (a — b). The following
results are due to the 19th-century French mathematician E. Lucas (1842-
1891).

Let p be a prime. Then
(1) (;) = 2] (mod p) for every n € N,
(ii) () =0 (mod p) for every r such that 1 <r<p-1,
(iii) ("1’1) = 0 (mod p) for every r such that 2<r<p-1,
(iv) (°7!) = (~1)" (mod p) for every r such that 0 <r < p—1,
(v) (73 =(=1)"(r +1) (mod p) for every r such that 0 < r < p—2,
(vi) (P73 = (=1)"("t?) (mod p) for every r such that 0 < r < p—3.
4° Given a prime p, one can always find an n € N* = NU{0} such that

n

P ,{(:) for every r=0,1,...,n.
For instance, take n = 0,1,2,...,p — 1 (see properties (iv)—(vi) above).

Besides these, there are other such numbers n, and so the problem is:

Given a prime p, determine the set

A={neN|p 1(:), for every r=0,1,...,n}.
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According to Honsberger [H2], this problem was posed and also solved

by two Indian mathematicians M.R. Railkar and M.R. Modak in 1976.
They proved that

neA iff n=kp™ -1
where m is a nonnegative integer and k = 1,2,...,p— 1.

5° Let n,r € N and p be a prime. Write n and r with base p as follows:

n=no+n1p+nap® + - + mept,
r=ro+rip+rp’ + -+ rapt,

where k is a nonnegative integer and n;,r; € {0,1,...,p — 1} for every
i=0,1,...,k. In 1878, Lucas proved the following important result:

()= () C) () et

In particular, if we take p = 2 and write n and r in binary system:

n = (ngng_1---ning)2

r= (Tkrk-l . '7'1"0)2

where n;,r; € {0,1} for every ¢ = 0,1,...,k, then we have the following
interesting result:

(f)isodd iff n;>r foreveryi=0,1,..,k. (2.7.3)

For instance, take a = 11 = (agazajag)z = (1011)3, b = 9 = (b3b2bibo)2 =
(1001)2, and ¢ = 6 = (caczc1c0)2 = (0110)2. Since a; > b; for every
i=0,1,2,3, () = (}) is odd; and since a; ¥ ¢z, (%) = (%)) is even.

6° According to Honsberger [H1], the following problem had been stud-
ied and solved by Fine [F]: Fix n € N, how many odd binomial coefficients
('r') are there at the n*" level of the Pascal’s triangle? We shall apply result
(2.7.3) to answer this question.

Write n = (ngnj—1 - - - n1ng); in binary system and let w(n) = Yr_, ni,
which is equal to the number of 1’s in the multi-set {no, n1,...,nx}. Given
r € Z such that 0 < r < n, write » = (rTg—1 - r179)2. By result (2.7.3),
(%) is odd iff r; < n;. In order that r; < n;, we have r; = 0if n; = 0, and
r; € {0,1} if n; = 1. Thus the number of choices for r is 2*("). We therefore
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conclude that given n € N, the number of odd binomial coefficients (:,') ’s
at the nt? level is given by 2¥(*). For instance, if n = 11 = (1011);, then
w(11) = 3, and among the 12 binomial coefficients (), (}),..., (}1) at
11th level, the following 8(= 23) are odd:

(@) =G =t D=GP=1 (=) =55 (5)=(5) =15

2.8. Multinomial Coefficients and the Multinomial
Theorem

By changing the symbols z, y to 1, z2 respectively, the binomial expansion
may be written as

n
n -
(21 +22)" = Z (r) 22y,
r=0
where n € N. Naturally, one may wish to find the coefficients in the

expansion of the following more general product:

(zl + 9 + .- + zm)n (2.8.1)

where n,m € N and m > 2.

To do this, let us first introduce a family of numbers, that can be re-
garded as extensions of binomial coefficients. Let

n
2.8.2
(nlynZ)“';nm) ( )

denote the number of ways to distribute n distinct objects into m distinct
boxes such that ny of them are in box 1, n3 in box 2, ..., and n,, in box
m, where n, m,nj, ng, ..., n,, are nonnegative integers with

n1+n2+...+nm=n_ (283)

What can be said about the number (2.8.2) when m = 2? Since there
are (:1) ways to select ny of n distinct objects and put them in box 1,
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and 1 way to put the remaining ns = n — n; objects in box 2, we see that
(nl,na) = (:1), which is the usual binomial coefficient. Actually, in general,
numbers of the form (2.8.2) can be expressed as a product of a sequence
of binomial coefficients as follows: From the given n distinct objects, there
are

(:1) ways to select n; objects and put them in box 1,
("’"‘ ways to select n; objects from the remaining objects

and put them in box 2,

(ﬂ-("1+ +ﬂm-2))

Nm—1

ways to select np, 1 objects from the remaining ob-

jects and put them in box (m — 1), and
(n—(n1+m+n,,._

o l)) =1 way to put the remaining objects in box m.

Thus we have

6 [ R e

Note that, as proved in Section 1.6, the right-hand product of (2.8.4) is

equal to . Thus we have:

]
niing!l--ny,!

n n!
( )=—rr—7' (2.8.5)
N1,N2y...yNm, NypNgl--Nyu:

We shall see the role played by the family of numbers (2.8.2) in the
expansion of the product (2.8.1).

In expanding the product,

(1t ot tom) =(z1+22+- +%)(m+m+ +2m),

ﬂ

we choose, for each of the above n factors, a symbol z; from {z1, z2,...,2m}
and then multiply them together. Thus each term in the expansion is of
the form:

ﬂz

P ay? - (2.8.6)
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for some nonnegative integers nq,ng, ..., n, with 2:’;1 n; = n. If the like
terms are grouped together, then the coefficient of (2.8.6) can be found.
Let A be the set of ways that (2.8.6) can be formed, and B the set of ways
of distributing n distinct objects into m distinct boxes such that n; objects
are put in box i for each i = 1,2, ..., m, where Y _;-, n; = n. We claim that
|A] = |B|. Define a mapping f : A — B as follows. For each member of

ng'

the form a = 27'z3? -- -zl in A, let f(a) be the way of putting n; objects

in box i (corresponding to ;). It is evident that f is a bijection between
A and B and so |A| = |B|, as claimed.

We thus conclude that the coefficient of (2.8.6) in the expansion is given
by

n
4| = |B| = ( )
N1, N2y ..oy Ny

Combining this with identity (2.8.5), we arrive at the following general-
ization of the binomial theorem, that was first formulated by G.W. Leibniz

(1646-1716) and later on proved by Johann Bernoulli (1667-1748).

Theorem 2.8.1 (The Multinomial Theorem). Forn,m €N,

n
n _ n n n
(x1+z2+...+x ) E (1 , )zllzzﬁ...xm
n )“’ )-":"m

where the sum is taken over all m-ary sequences (ny, nz, ..., Nm) of nonnegy-

ative integers with Y i~  n; =n, and

( n ) n!
ny,na,..., N, nylng!. - ny,!
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Example 2.8.1. For n =4 and m = 3, we have by Theorem 2.8.1,

4 4 4
(z1+x2+:c3)4= 40 O)x'l‘+ (3 1 0)1:?:::2+ (3 0 l)z?za

= zf + 41:?:02 + 41:?1:3 + 62%1:% + 121:%:):23:3 + szzg
+ 4z1z§’ + 121:11:%1:3 + 121:1:1:2:0;‘; + 4:1:1::2 + x;

+ 42323 + 62322 + 42023 + 3.

Because of Theorem 2.8.1, the numbers of the form (2.8.2) are usually
called the multinomial coefficients. Since multinomial coefficients are gener-
alizations of binomial coefficients, it is natural to ask whether some results
about binomial coefficients can be generalized to multinomial coefficients.
We end this chapter with a short discussion on this.

1° The identity ( ) = (n_ - ) for binomial coefficients may be written
("1;"2) = (n2 - ) (here of course n; + ny = n). By identity (2.8.5), it is
easy to see in general that

( " ) = ( " ) (2.8.7)
n1,N2,..sNm Na(1); Na(2); - - - Na(m)

where {a(1),(2), ...,a(m)} ={1,2,..,m}.
2° The identity () = ("l_l) + (- 1) for binomial coefficients may be

written:
n n—1 n—1
= + .
ny, Ny ny—1,n, n;,ny—1

In general, we have:

n n-—1 n-1
— + + cen
N1, N2, ..., Ay ny —1,n9,..,npy ny,ny—1,..,n,

n—1
+ (n],) nZ, veey My — 1) ' (2.8-8)
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3° For binomial coefficients, we have the identity y_, (?) = 2". By
letting z; = 22 = - -+ = £, = 1 in the multinomial theorem, we have

n n
Z (nl,nz, ...,nm) =m (2.8.9)

where the sum is taken over all m-ary sequences (ny,ng, ..., n,;,) of nonneg-
ative integers with Y-, n; = n.

Identity (2.8.9) simply says that the sum of the coefficients in the ex-
pansion of (1 + z3 + - - + zm)" is given by m". Thus, in Example 2.8.1,
the sum of the coefficients in the expansion of (z1 + 3 + z3)* is 81, which
is 3%.

4° In the binomial expansion (z, + 22)" = Yy (F)27z5 ™", the num-
ber of distinct terms is n + 1. How many distinct terms are there in the
expansion of (z; + 22 + -+ + £,)"? To answer this question, let us first
look at Example 2.8.1. The distinct terms obtained in the expansion of
(z1 + 22+ z3)4 are shown on the left column below:

g — {4 -z}
3z, — {3-z1,25}
z3z3 — {3.-z1,z3}
z?z2 — {22,275}
zizazs — {2-21,22,23}
222 — {221,223}
123 — {21,325}
12323 — {21,2-23,23}
z12025 — {21,%2,2 23}
123 — {21,323}
3 — {4-z3}
z3z3 — {3-z,,z3}
gzl — {2-15,2 23}
2223 — {22,323}
zi — {4-z3}.

Observe that each of them corresponds to a unique 4-element multi-subset
of M = {00 -z1,00-23,00-23}, and vice versa, as shown on the right column
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above. Thus by (BP), the number of distinct terms in the expansion of
(z1 + z2 + z3)* is equal to the number of 4-element multi-subsets of M,
which is H? = (‘“’2’1) = (g) = 15. In general, one can prove that (see
Problem 2.62)
the number of distinct terms in the expansion of (z1 + z2+ -+ - + zm)"
is given by H = (*t™-1),
In particular, for binomial expansion, we have H2 = (2"",:'1) = n+1, which
agrees with what we mentioned before.

5° It follows from (2.7.1) and (2.7.2) that for a given positive integer n,
the maximum value of the binomial coefficients (:,'), r=0,1,...,n,is equal

to
n P
n if n is even,
2

(”";1) - (;‘__1) if n is odd.
2 2

What can we say about the maximum value of multinomial coefficients
(4, 2. )7 This problem has recently been solved by Wu [W]. For n,m >

n1,n2,...,Nm

2, let

M(n,m) = max { (n1, nzf. . ,nm)

Case 1. m|n.

i=1

m
n; € N* and En;:n}.

Let n = mr for some r € N. Then

n n!
M(n,m) = (r,r,...,r) = (rHm’

m

and (,.’ o ,,.) is the only term attaining this maximum value.
N e’

Case 2. m [n.
Suppose that n = mr + k for some r,k € N with 1 <k <m —1. Then

n
M(n’m)_ (r,r,”.,r,(rq-l),(r-}'1),-.-,(""'1)
\—~¥ e

o

m-k k
n! n!

= TG D - DR
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and (m.n:..,nm)’ where {n,n3,...,nm} = {(m —k) - rk-(r+1)} as
multi-sets, are the (';:) terms attaining this maximum value.

For instance, in Example 2.8.1, we have
n=4, m=3, r=1and k=1.

Thus the maximum coefficient is
4!

12,

which is attained by the following (') = 3 terms:

4 4 a4
1,1,2)" \1,2,1) *¢ \o,1,1)°

Exercise 2

1. The number 4 can be expressed as a sum of one or more positive integers,
taking order into account, in 8 ways:

4=143=34+1=2+2=1+1+42
=14+241=24+141=1414+141.

In general, given n € N, in how many ways can n be so expressed?

2. Find the number of 2n-digit binary sequences in which the number of
0’s in the first n digits is equal to the number of 1’s in the last n digits.

3. Let m,n,r € N. Find the number of r-element multi-subsets of the
multi-set
M = {a1,a3,...,an,m - b}
in each of the following cases:
(@ r<m,r<n
(ii) n<r<m
(i) m<r<n
4. Ten points are marked on a circle. How many distinct convex polygons
of three or more sides can be drawn using some (or all) of the ten points

as vertices? (Polygons are distinct unless they have exactly the same
vertices.) (AIME, 1989/2)
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11.

12.

13.

14.
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. Find the coefficient of z° in the expansion of (1 + z + z2)8.

Find the coefficient of z° in the expansion of (1 + z + z2)°.

Find the coefficient of £!8 in the expansion of
(142 + 2° + 7)1,
Find the coefficient of 2° in the expansion of

(1+35 +z7+39)1°°°.

. In the expansion of

(I+z+z2+.- 42?3,

what is the coefficient of
@) =57 (i) =87

Given an n-element set X, where n € N, let O = {A C X | |A]| is odd}
and £ = {A C X | |A| is even}. Show that |O| = |€| by establishing a
bijection between O and £.

Find the number of permutations of the multi-set {m - 1,n - 2}, where
m,n € N, which must contain the m 1’s.

Let 1 < r < n and consider all r-element subsets of the set {1,2,...,n}.
Each of these subsets has a largest member. Let H(n,r) denote the
arithmetic mean of these largest members. Find H(n,r) and simplify
your result (see Example 2.5.2).

For n € N, let A(n) denote the number of triangles XY Z in the nth
subdivision of an equilateral triangle ABC (see Figure 2.5.2) such that
YZ//BC, and X and A are on the same side of Y Z. Evaluate A(n).
(For other enumeration problems relating to this, see M.E. Larsen, The
eternal triangle — A history of a counting problem, The College Math.
J. 20 (1989), 370-384.)

Find the coefficients of z” and z"*" (1 < r < n) in the expansion of

Q+2)"+z(1+2) 4+ 2214 2) 2+ ... +2"(1 4+ 2)".
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15. A polynomial in z is defined by
ao + 617 + a2z’ + -+ - + azez® = (z + 227 + -

Show that
2n

i=n+1 e

16. Show that
P: +P:+1 + P2r P2r+1
where r is a nonnegative integer.
17. Given r,n,m € N* with r < n, show that
1
P + p;l+l +---+ p;'+m = pyre 1(P:l_’-_+lm+1
(See Problem 2.35.)

18. Show that
(i) for even n € N,

n n . . . n'
()<() wosiesss

and

(ii) for odd n € N,

z - = n(n + 1)(5n2 +5n+2).

-4 nz™)2.

Ply)-

n n\ . N |
(i)<(j) if 051<J§§(n—1),

> (") i s+l <i<is<

; j) i3 <i<j<n.

19. Give three different proofs for each of the following identities:

and

(l) (2(::11)) - (n+1) + 2(2:) + (nzfl
(i) ("5 = Gy + (R + (Y-
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20. Give a combinatorial proof for the identity
n\(m\ __(n\[(n-—r
m/\r) \r/\m-r)
21. Show that for n € N*,
Z @)y (%)2
2((n — P \N2 :
(M2 ((n—r)Y)

22. By using the identity (1 —z2)* = (1 + a:)"(l — z)", show that for each
m € N* with m < n,

B o) = (D),

=0

() m i)

=0

and

Deduce that

Z( 1)'() {( 1)}(3) ifniseven

if n is odd.

23. What is the value of the sum

(m+1)  (m+2)
TR

(Beijing Math. Contest (1962))

(m + n)!

S=m!+ o

?

.|_....+

Prove each of the following identities in Problems 24-43, where m,n € N*:

24. z"; 3 (7) =4m,

r=0

25. zijo(r +1)(7) = (n+2)2~1,

n
26~ r+1 (n) = n+1 (2n+1 - 1),

r=0

7. 5 G0 =

r—O
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2. 3> () =2""(3) for m<n,
m (=)™ (";1) ifm<
2. 3517 () = { "

0 ifm=n,

30. rz’::o(-l)"‘" ®) =71 for m<n-—1,
31. io (=1y+(") =0,

n—1
392. }: (Zn:l) = 22,._2’

r=0
n
3. 5 (1) =21+ 40,

- 2n\ _ . 92n-1
34. 3 r(*) =n22n1,

r=0
35. 30 (%) = ("t™H) = (") for k€ N* and k <m,
r=k
36. 3 ()0 = (35,
n (-1)™ ifm=n
3. L (-1 (D) () =
r=m 0 if m < n,

n—1
38. rz=:1 (n— r)z(::: =n(n—1)2"3,
(See Problem 2.47(i).)

3. 3 ()7 =4{@+ )},
0. 5 07000 = QO frkeN 05k <n,
2 () = £ OO,

2. 5 (MO = @), frpeN,pzmn
r=
(Li Shanlan, 1811-1882)

m
8. 5 (MO = EmeE), frpeN.
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(Li Shanlan)

44. Prove the following identities using the technique of counting shortest
routes in a grid:

) go (") =27,
(ii) éo (+%) = ().

45. Use the technique of finding the number of shortest routes in rectangular
grid to prove the following identity:

P\ (r p—1\(r+1\, (p—q)(r+q)_(p+r+1
(q)@*(q—l)( 1 )* No/\e )70 ¢ )
46. Give a combinatorial proof for the following identity:
n n .
Zr( ) =n.2""1
r=1 r
47. Given n € N, show that
n
() 3 r2() = nn + 127
r=1
(Putnam, 1962)
@) 35r°0) = niln+ 92
r=1
(iii) f: r(?) = n(n +1)(n? + 5n — 2)27~4,
r=1
48. (i) Prove that for r,k € N,
[k
k_ \k-d
r* = Z (i)(r 1)*~*.
=0
(i) For n,k €N, let

R(n, k) = X":r” (:)

r=1

Show that

R(n, k) =n-’§ (kj_,l)R(n—l,j).

j=0



108 Ezercise 2

Remark. Two Chinese teachers, Wei Guozhen and Wang Kai (1988)
showed that

n

o (:) - gs(k,i) PP 27

r=1
where k < n and S(k,1)’s are the Stirling numbers of the second kind.
49. Prove that

2:;-}:(’:) = g%(zr ~1).

50. Give two different proofs for the following identity:
() = (i)
r =n 1)
r=1 r n-
51. Let p be a prime. Show that

(f) =0 (mod p)

for all » such that 1 < r < p— 1. Deduce that (1 + z)? = (1 + zP)
(mod p).

52. Let p be an odd prime. Show that

(2:) =2 (mod p).

53. Let n,m,p be integers such that 1 <p<m < n. .

where n € N.

(i) Express, in terms of S(n, p), the number of mappings f : N, — Ny,
such that |f(Ny)| = p.

(ii) Express, in terms of S(n,k)’s, where p < k < m, the number of
mappings f : N, — N, such that N, C f(N,,).
54. Recall that for nonnegative integers n,r, H* = ("*"~!). Prove each of
the following identities:
(a) HP = 2HIH,
(b) Hp = 2i=1 :-IH:"—I;
(c) HP = Hr_y + HP
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r
@) > Hp = H*
k=0
r
(e) Z kHE = nHH,
®) E HPHT_, = Hm.

55. Forn,kGwathn22andlgkgn,let

wn-|)-(2)

dmin(n) = min{dx(n) |1<k<n}

Show that

(1) dmin(n) = 0 iff n is odd;

(ii) For odd n, di(n) = 0 iff k = 1(n +1).
Let d%; (n) = min{di(n) | 1< k <n, k# 3(n+1)}. Show that
(iii) For n # 4, dfin(n)=n—1;

(iv) For n # 4 and n # 6,

di(n)=n—-1iff k=1 or k=mn;
(v) For n=6,d(6) =5iff k=1,3,4 or 6.

(See Z. Shan and E.T.H. Wang, The gaps between consecutive binomial
coefficients, Math. Magazine, 63 (1990), 122-124.)

56. Prove that
(1) ((g)) =3("}) forneN;
(ii) ((:)) > ((:)) forne N,n > 3;
@) @)= £ @),
1 ifjis odd

0 ifj iseven,

@) @) = z F (),

for n,r G N with r < n.
(For more results on these iterated binomial coefficients, see S.W.
Golomb, Iterated binomial coefficients, Amer. Math. Monthly, 87
(1980), 719-727.)

where ¢; = { and n,r € N with r < n;
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57.

58.

59.

60.

61.

62.
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Let a, = 6™ + 8". Determine the remainder on dividing ass by 49.
(AIME, 1983/6)

The increasing sequence 1, 3, 4, 9, 10, 12, 13, ... consists of all those
positive integers which are powers of 3 or sums of distinct powers of 3.
Find the 100th term of this sequence (where 1 is the 1st term, 3 is the
2nd term, and so on). (AIME, 1986/7)

The polynomial 1 —z + 22 — 23 + .- - + 1% — 217 may be written in the
form ap + a1y + azy2 + aay3 + -+ 016.1/16 + 0173/17, where y =z + 1
and the a;’s are constants. Find the value of a;. (AIME, 1986/11)

In an office, at various times during the day, the boss gives the secretary
a letter to type, each time putting the letter on top of the pile in the
secretary’s in-box. When there is time, the secretary takes the top letter
off the pile and types it. There are nine letters to be typed during the
day, and the boss delivers them in the order 1, 2, 3, 4, 5, 6, 7, 8, 9.
While leaving for lunch, the secretary tells a colleague that letter 8 has
already been typed, but says nothing else about the morning’s typing.
The colleague wonders which of the nine letters remain to be typed after
lunch and in what order they will be typed. Based upon the above in-
formation, how many such after-lunch typing orders are possible? (That
there are no letters left to be typed is one of the possibilities.) (AIME,
1988/15)

Expanding (1 + 0.2)!°% by the binomial theorem and doing no further
manipulation gives

(1°°°°)(0.2)°+(1°1°°)(0.2)1+(1°2°°)(0.2)2+"'+(iggg)(0.2)‘°°°
= Ao+ A1+ Az + -+ + Aiooo,

where A = (1%°)(0.2)* for k = 0,1,2,...,1000. For which k is A the
largest? (AIME, 1991/3)

Prove that the number of distinct terms in the expansion of

(1 t+zat- - +zm)”

is given by H™ = (""":_1).
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64.
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Show by two different methods that
(o) =23 G n)
niy,N2,...,Nm =1 nl,...,n,-—l,ng+1,...,nm )

For n,m € N, show that

3 ( " ) = mlS(n,m),

n1,N2,...,Nm

where the sum is taken over all m-ary sequences (n4,ny,...,nm,) such
that n; # 0 for all 7, and S(n,m) is a Stirling number of the second
kind.

Prove that
Z n (_1)n3+n4+ne+-~ - 1 if m is odd
ny,n2,...,Nnm 0 if m is even,
where the sum is taken over all m-ary sequences (ni,n2,...,ny,) of

nonnegative integers with ) i~ n; = n.

Prove the following generalized Vandermonde’s identity for multinomial
coefficients: for p,q € N,

p+aq
ki, kay... km

= % (it i) ( ” )
J1rd2s- s dm) \k1 —J1. k2 — Jo2, - s km — Jm /)’

where the sum is taken over all m-ary sequences (j1, jz, ..., jm) of non-
negative integers with j; +ja+ -+ jm = p.

Given any prime p and m € N, show that
( P ) =0 (mod p),
ni, N2, Nm
ifp#n; foranyi=1,2,...,m.
Deduce that

m P m
(Z z,-) = Z zf  (mod p).

i=1 i=1
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68. Let p be a prime, and n € N. Write n in base p as follows:
n=ng+nip+nap® + - -+ mpp*,

where n; € {0,1,...,p— 1} foreach i = 1,2,...,k.
Given m € N, show that the number of terms in the expansion of
(z1+ 22+ -+ z,,)" whose coefficients are not divisible by p is

ﬁ(n.'+m—1)
i=0 m—1

(See F.T. Howard, The number of multinomial coefficients divisible by
a fixed power of a prime, Pacific J. Math., 50 (1974), 99-108.)

69. Show that , )
2": (n) (2n+m—r) _ (m+n)
r n - n )
r=0

(Li Jen Shu)
70. Show that

where n € N.
71. Given r € N with r > 2, show that

NN
(see H.W. Gould, Combinatorial Identities, Morgantown, W.V. (1972),
18-19)

72. Let S ={1,2,...,n}. For each A C S with A # 0, let M(A) = max{z |
z € A}, m(A) = min{z | ¢ € A} and a(A) = M(A) + m(A). Evaluate
the arithmetic mean of all the a(A)’s when A runs through all nonempty
subsets of S.

n
73. Given a, = Y (:)_l, n €N,
k=0

show that

lim a, = 2.
n—00

(Putnam, November 1958)
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75.
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Let (z)o = 1 and for n € N, let

(2)n=2(z2-1)(2=2)---(z—n+1).
Show that

e +on=3 (1) @wn-s

i=0
for all n € N*. (Putnam, 1962)

In how many ways can the integers from 1 to n be ordered subject to
the condition that, except for the first integer on the left, every integer
differs by 1 from some integer to the left of it? (Putnam, 1965)

Show that, for any positive integer n,
n=1
lfj {n—2r (n>}2 _ _1_(2,1-2)
= n r n\n-1
(Putnam, 1965)

Show that for n € N with n > 2,

n
Zr (:) < V2n-1p3,
r=1

(Spanish MO, 1988)
Let n,r € N with r < n and let k¥ be the HCF of the following numbers:

()00

Show that there are no four consecutive binomial coefficients (7), (r_"‘_l),

(r-?-z)’ (ria) (n,r € N with r + 3 < n) which are in arithmetic progres-
sion. (Putnam, 1972)

Show that k = 1.

Find the greatest common divisor (i.e., HCF) of

(7)(3) (ann )

(Proposed by N.S. Mendelsohn, see Amer. Math. Monthly, 78 (1971),
201.)
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81.

82.

83.

84.

85.

86.

87.

Let n € N. Show that (*) is odd for each r € {0,1,2,...,n} iff n =
2% _ 1 for some k € N.

An unbiased coin is tossed n times. What is the expected value of
|H — T|, where H is the number of heads and T is the number of tails?
In other words, evaluate in closed form:

QTI-T KZ:%(n —2k) (Z)

(“closed form” means a form not involving a series.) (Putnam, 1974)

Prove that
()= () tmoan

for all integers p,a and b with p a prime, and @ > b > 0. (Putnam,
1977)

The geometric mean (G.M.) of k positive numbers ay, ag, ..., a is de-
fined to be the (positive) kth root of their product. For example, the
G.M. of 3, 4, 18 is 6. Show that the G.M. of a set S of n positive
numbers is equal to the G.M. of the G.M.’s of all nonempty subsets of
S. (Canadian MO, 1983)

For n,k € N, let Sx(n) = 1¥ 4+ 2¥ 4 ... + n*. Show that

@

m-1

> (T:)Sk(n) =(n+1)" -1,

k=0
() )
Sm(n) = S (=1)™F (™) S(n) = n™,
=20 (7)) sk

where m € N.

Let P(z) be a polynomial of degree n,n € N, such that P(k) = 2¥ for
eachk =1,2,...,n+1. Determine P(n+2). (Proposed by M. Klamkin,
see Pi Mu Epsilon, 4 (1964), 77, Problem 158.)

Let X = {1,2,...,10}, A={ACX ||A|=4},and f: A — X be an

arbitrary mapping. Show that there exists S C X, |S| = 5 such that
fS={rh #r

for each r € S.



88.

89.

90.

91.
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(i) Applying the arithmetic-geometric mean inequality on
n+1 n+1 . [(r+t 1
1 ) 2 ’ b n )

n
n+l _ og\n n "+1
e -2 1 ("),

r=1

show that

where n € N.
(ii) Show that

(iif) Deduce from (i) and (ii) or otherwise, that

(23) < e

(iv) Show that the equality in (iii) holds iff n = 1 or n = 2. (See The
College Math. J. 20 (1989), 344.)

Find, with proof, the number of positive integers whose base-n repre-
sentation consists of distinct digits with the property that, except for
the leftmost digit, every digit differs by +1 from some digit further to

the left. (Your answer should be an explicit function of n in simplest
form.) (USA MO, 1990/4)

Let Sp = Y p—o (3¢). Prove that
lim (Sa)3% =2.

(Bulgarian Spring Competition, 1985)

(i) If f(n) denotes the number of 0’s in the decimal representation of
the positive integer n, what is the value of the sum

£(9999999999)

S=2f(1)+2f(2)+...+2 10 ?
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92.

93.

94.

95.

96.

Ezercise 2

(ii) Let a be a nonzero real number, and b, k,m € N. Denote by f(k)
the number of zeros in the base b+ 1 representation of k. Compute

n
§u=3al®,
k=1

where n = (b+1)" - 1.
Remark. Part (i) was a 1981 Hungarian Mathematical Competition

problem. Part (ii) is a generalization of part (i), and was formulated by
M.S. Klamkin (see Cruz Mathematicorum, 9 (1983), 17-18).

Prove that the number of binary sequences of length n which contain

exactly m occurrences of “01” is (2':”"':1). (Great Britain MO, 1982/6)

There are n people in a gathering, some being acquaintances, some
strangers. It is given that every 2 strangers have exactly 2 common
friends, and every 2 acquaintances have no common friends. Show that

everyone has the same number of friends in the gathering. (23rd Moscow
MO)

Let n € N*. For p=1,2,..., define

wom (-G

Prove that, whenever n is odd, Az(n) = nA;(n). (Proposed by HW.
Gould, see Amer. Math. Monthly, 80 (1973), 1146.)

Let n € N*. For p=1,2,..., define

=2 {()- (7))

Evaluate By(n). (Proposed by E.T. Ordman, see Amer. Math.
Monthly, 80 (1973), 1066.)

Show that
. ! ny —1
(i) (2" N7 =2 {7+ ()T }whererneN

_ -1
(i) Z( 1" 1(2” l) Z r= 2n+1 E
(Proposed by L Kaucky, see Amer. Math. Monthly, 78 (1971), 908.)
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97. Given ¢,m,n € N* with £,n < m, evaluate the double sum
2‘: i Am—1i\ [(n\/m-n
(—1)’( )()( )
=0 j=0 m—¢ J t=J

(Proposed by D.B. West, see Amer. Math. Monthly, 97 (1990), 428-
429.)

98. Show that
%)) 2066

where m,n,p,q,s € N*. (See R.C. Lyness, The mystery of the double
sevens, Cruz Mathematicorum, 9 (1983), 194-198.)
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Chapter 3

The Pigeonhole Principle and Ramsey
Numbers

3.1. Introduction

You may have come across the following statements which are of the same
mathematical nature:

“Among any group of two or more people, there are two who have the same
number of friends in the group.”

“Among any 5 points in an equilateral triangle of unit length, there are two
whose distance is at most half a unit apart.”

“Given any set A of 5 numbers, there are 3 distinct elements in A whose
sum is divisible by 3.”

“Given a sequence of 10 distinct numbers, there exists either a decreasing
subsequence of 4 terms or an increasing subsequence of 4 terms.”

This type of problems concerns with the existence of a certain kind of
quantity, pattern or arrangement. In this chapter, we shall introduce a
fundamental principle in combinatorics, known as the Pigeonhole Principle,
which deals with a class of problems of this type. We shall also see how the
principle can be applied to study some problems that give rise to a class of
numbers, called Ramsey numbers.

3.2. The Pigeonhole Principle

If three pigeons are to be put into two compartments, then you will certainly
agree that one of the compartments will accommodate at least two pigeons.
A much more general statement of this simple observation, known as the
Pigeonhole Principle, is given below.

119
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The Pigeonhole Principle (PP). Let k and n be any two posi-
tive integers. If at least Fa+l objects are distributed among n boxes,
then one of the boxes must contain at least & +1 objects. In particular,
if at least n + 1 objects are to be put into n boxes, then one of the
boxes must contain at least two objects.

The proof of (PP) is easy. If no boxes contain k+1 or more objects, then
every box contains at most k objects. This implies that the total number
of objects put into the n boxes is at most kn, a contradiction. g

(PP) is also known as the Dirichlet Drawer Principle, after the Ger-
man mathematician Peter G.L. Dirichlet (1805-1859) who had used it to
prove some results in number theory. (PP) looks almost trivial; however,
as we shall witness in this and the following two sections, it is a surpris-
ingly useful and powerful device that proves many “existence” statements
in mathematics.

Example 3.2.1. Among any group of 7 people, there must be at least
4 of the same sex.

Let us see how (PP) can be applied to this example. We treat the
7 people as 7 objects, and create two “boxes”: box (1) for “female” and

box (2) for “male”. / \
o [ ] @ [ |

female male

If a person of the group is a lady (resp., gentleman), then she (resp., he) is
put into box (1) (resp., box (2)). Thus the 7(= 3-2+1 = kn+1) “objects”
are put into 2(= n) “boxes” and so by (PP), there is a box which contains
at least 4(= 3+ 1 = k + 1) objects; i.e., there are at least 4 people among
the group who are of the same sex. g

By applying (PP) in a similar way, you should be able to prove the
following.

Example 3.2.2. Among any group of 13 people, there must be at
least 2 whose birthdays are in the same month.
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Example 3.2.3. Among any group of 3000 people, there are at least
9 who have the same birthday.

As we have just seen, in applying (PP), we have to identify what the
“objects” and what the “boxes” are. Moreover, we must know the values
of k and n (number of boxes) involved in (PP), and to make sure that the
number of objects is at least kn + 1.

Example 3.2.4. Show that for any set of 10 points chosen within a
square whose sides are of length 3 units, there are two points in the set
whose distance apart is at most /2.

What are the objects? What are the boxes? These are the two questions
we have to ask beforehand. It is fairly clear that we should treat the 10
given points in the set as our “objects”. The conclusion we wish to arrive
at is the existence of “2 points” from the set which are “close” to each
other (i.e. their distance apart is at most v/2 units). This indicates that
“k+1=2" (ie., k = 1), and suggests also that we should partition the
3 x 3 square into n smaller regions, n < 10, so that the distance between
any 2 points in a region is at most v/2.

Solution. Divide the 3 x 3 square into 9 unit squares as shown below:

Let A be any set of 10 points (our objects) chosen from the 3 x 3 square.
Since each point in A is contained in (at least) one of the 9 unit squares
(our boxes), and since 10 > 9, by (PP), there is a unit square (box) which
contains at least 2 points (objects) of A. Let these 2 points be u and v.
It is easy to verify that the distance between u and v does not exceed the
length of a diagonal of the unit square, which is VIZ+12 =42, ]
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Remarks. (1) If the hypothesis of (PP) is satisfied, then the con-
clusion of (PP) guarantees that there is a (certain) box which contains at
least k + 1 objects. It should be noted, however, that (PP) does not tell us
“which box it is” and “which k + 1 objects it contains”.

(2) In Example 3.2.4, one might divide the 3 x 3 square into the 9
rectangles as shown below, and apply (PP) to reach the conclusion that

there are 2 points in A contained in one of the 9 rectangles.

In this case, however, one would not be able to draw the conclusion that
the distance between these 2 points is at most v/2. So, does it mean that
(PP) is invalid? Certainly not! It simply reveals the fact that the “boxes”

we create here are not appropriate!

3.3. More Examples

In the preceding section, we gave some simple examples where (PP) can
be applied. They are “simple” since the identification of the “objects” and
“boxes” in these problems is rather straightforward. This is not always
the case in general. In this section, we shall present more difficult and
sophisticated problems from different areas where (PP) can be applied (but
in a nontrivial way). Through the discussion of these problems, it is hoped
that readers will appreciate, as a mathematical tool in problem solving,
how powerful and useful (PP) is.
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Example 3.3.1. Let A = {a;,ay,...,a5} be a set of 5 positive integers.
Show that for any permutation a;, a;,a;,a;,a;, of A, the product

(ai, — a1)(ai, — az) - - - (ais — a5)

is always even.

For instance, if

al=2) 0225, 03=7) a4=3) (15=8,
ai; = ay, ai, = as, aj, = as, a;, = a, ais = ay,

then the product

(a4 — a1)(a3 — az)(as — a3)(a1 — a4)(az — as)
=(3-2)(7-5)(8-T7)(2-3)(5-8) =6,

which is even.

Unlike those examples given in Section 3.2, it is not apparent how (PP)
can be applied here. Let us first analyze the problem. To show that the
product is even, it suffices to show the “existence” of an even factor, say
(a;, — ar). We note that the number a;, — a; is even if and only if a;, and
ap are both even or both odd (in this case, we say that a;, and a; have
the same parity). Thus we see that it may have something to do with the
parity of the 5 numbers in A. In view of this, we create 2 “boxes”, one for
“even numbers” and one for “odd numbers”.

Solution. We have |A| = 5. By (PP), there exist at least 3 elements
of A (say, a1, az,as) which are of the same parity (in this case k = n = 2).

o L] @ [_|
even odd

Observe that {a;,, a;,,ai,} N{a1,a2,a3} # 0 (otherwise, |A| will be at least
6 = |{ai,, ai,,ai,,01,02,a3}]). Thus we may assume, say a; = a;,. This
implies that a;; — ag = a; — ag, the latter being even as a; and ag are of
the same parity. Thus the factor (a;; — a3) is even, which completes the
proof. g
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Remarks. (1) The above proof can be extended in a natural
way to prove the same result for any odd number of positive integers
aj,az, ..., azp41 (see Problem 3.6).

(2) The conclusion of Example 3.3.1 is no longer true if |A| is even.

Example 3.3.2. Ten players took part in a round robin chess tour-
nament (i.e., each player must play exactly one game against every other
player). According to the rules, a player scores 1 point if he wins a game;
—1 point if he loses; and 0 point if the game ends in a draw. When the
tournament was over, it was found that more than 70% of the games ended
in a draw. Show that there were two players who had the same total score.

Judging from the last statement of the problem, it seems that we should
treat the 10 players as our “10 objects”, and create “boxes” for “total
scores”. However, what are the possible total scores? How many different
total scores are there? (Don’t forget, we have to ensure that the number
of objects is bigger than the number of boxes.) These questions seem not
easy to answer. Let us try an “indirect” way.

Solution. Since every 2 players played one and only one game against
each other, there were (120) = 45 games held during the tournament. Among
these games, there were at least

[45 x 70%)] = [31.5] = 32

games that ended in a draw, where [z] denotes the least integer not less
than the real z. Hence

(*) there were at most 45 — 32 = 13 games which did not end in a draw.

Now, suppose to the contrary that the 10 players had 10 different total
scores. This implies particularly that at most one of the players had total
score “0”. Thus at least 9 players had either “positive” or “negative” total
scores. Treat these players as our “objects”, and create 2 “boxes”, one for
“positive” and one for “negative”. By (PP), at least 5 players had positive
total scores or at least 5 players had negative total scores.

| | @) | |

positive total negative total
score score
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By symmetry, we may assume the former. Since the total scores are as-
sumed to be different, the sum of these positive total scores must be at
least

1+24+34+445=15.

But this implies that there must be at least 15 games which did not end in
a draw, contradicting the statement (). Hence there were 2 players who
had the same total score. g

Example 3.3.3. Let A be a set of m positive integers where m >
1. Show that there exists a nonempty subset B of A such that the sum
Y (z | = € B) is divisible by m.

For example, if A = {3,9,14,18,23}, then m = |A| = 5, and we take
B = {3,14,18} (there are other choices for B). Observe that

Y (z|z€B)=3+14+18=35,

which is divisible by 5.

Since the conclusion of the problem involves the divisibility of m, one
possible way to tackle the problem is to make use of the congruence relation
modulo m. (Recall that a = b (mod m) iff m|(a —b).) A basic property of
“=” says that if a = r (mod m) and b = r (mod m), then a = b (mod m),
i.e., m|(a — b). This observation suggests the following solution.

Solution. Let A = {a1,a2,...,am}. Consider the following m subsets
of A and their respective sums:

Al={al}y A2={a1)a2}) ) Am:’{al)aZ"";am};
ai, a; + az, -y @y taz+t-cc+anm.

If one of the sums (say a; + a; + ag) is divisible by m, then we take B to
be the respective set (in this case, B = A3), and we are through. Thus we
may assume that no sums above are divisible by m, and we have

a; = r; (mod m),

a; + a2 = ry (mod m),

a1 +az+ -+ ap = ry (mod m),
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where r; € {1,2,...,m — 1} for each i = 1,2,...,m.
Now, treat the m sums as our m “objects” and create m — 1 “boxes”
for the m — 1 residue classes modulo m:

) | I (&) | I (m-l)l I

z=1(mod m) z=2(mod m) z=m—1(mod m)
By (PP), there are 2 sums, say
ay+az+---+a; and ay+az+---+a;+---+aj,
where i < j, that are in the same residue class modulo m; i.e.,
a;+ay+---+a; =r (mod m)
and a;+az+---+a;i+---+a; =r (mod m)
for some r € {1,2,...,m — 1}. This implies that
ay+az+---+a;+---+a;=a; +ay+---+a; (mod m),
ie. mi((ar+---4+ai+---+a;)— (a1 +az+---+a))
or m|(ai41 + aiy2 + - +a;).
Thus, B = {a;41,8i42,...,8j} (= Aj\Ai) is a required subset of A. g
The following example is an IMO problem (IMO, 1972/1) with the orig-

inal statement rephrased.

Example 3.3.4. Let X C {1,2,...,99} and |X| = 10. Show that it
is possible to select two disjoint nonempty proper subsets Y,Z of X such
that (v |y € Y) = 3(z | z € 2).

For instance, if X = {2,7,15,19, 23, 50, 56, 60, 66,99}, take Y = {19,50}
and Z = {2,7,60}, and check that

SwlyeY)=19+50=2+7+60=3 (z|z € 2).

The required conclusion suggests that we may treat the nonempty proper
subsets of X as our “objects”, and create the “boxes” for their possible
sums. If the number of “objects” is larger than the number of “boxes”,
then there are two nonempty proper subsets of X which have the same
sum. This conclusion is very close to what we want. Now, how are we
going to estimate the number of “objects” and the number of “boxes”?
These are two crucial questions that we have to answer.
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Solution. Since |X| = 10, by Example 1.5.2, the number of nonempty
proper subsets of X (excluding 0, X) is

210 — 2 = 1022.
On the other hand, for each nonempty proper subset A of X,
1<) (ala€A)<91+92+---+99 = 885;

that is, the sum of numbers in each A lies inclusively between 1 and 855.

Now, treat the 1022 nonempty proper subsets of X as our “1022 ob-
jects”, and create “855 boxes” for the sums “1,2, ...,855”. Since 1022 > 855,
by (PP), there are two distinct nonempty proper subsets B, C of X which
have the same sum; i.e.,

d(blbeB)=) (c|ceC).

(Note that B and C need not be disjoint and thus they may not be the
desired subsets of X.) Clearly, BZ C and C € B. Let Y = B\(BNC)
and Z = C\(BNC). Then we have Y (y |y €Y) = > (2| 2 € Z) (why?)
and so Y and Z are two desired subsets of X. g

Example 3.3.5. (IMO, 1983/4) Let ABC be an equilateral trian-
gle and & the set of all points contained in the 3 segments AB,BC,CA
(including A, B and C). Show that, for every partition of £ into 2 disjoint
subsets, at least one of the 2 subsets contains the vertices of a right-angled
triangle.

For instance, if the set £ is partitioned into 2 subsets £, and &; as shown
in Figure 3.3.1(a), then it is not difficult to find 3 points all in &; or &; (in
this case both) which form a right-angled triangle (see Figure 3.3.1(b)).

A

—51
—82

(a) (6)

Figure 3.3.1.
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Solution. We prove it by contradiction. Suppose to the contrary that
there is a partition of £ into 2 disjoint subsets £ and &, such that

(*) no three points in &; (resp., £2) form a right-angled triangle.

Let X,Y and Z be the points on AB, BC and CA respectively such
that

Consider AAZX. We claim that ZAZX = 90° (see Figure 3.3.2.).
A

X

B c
Y

Figure 3.3.2

By cosine law,
(X2)? = (AZ)* + (AX)? - 2(AX)(AZ)cos LXAZ
= acy + 2aBy — 2t ac)24B)cosér®
3 3 3773
T
= 3(4B)”

Thus (X Z)? + (AZ)? = 1(AB)? + }(AC)? = (2AB)? = (AX)?, and by
Pythagolas’s theorem, ZAZX = 90°, as claimed.

Similarly, we have ZBXY = LCY Z = 90°.

Treat the points X,Y and Z as “3 objects”, and create “2 boxes”: one
for £ and one for &. By (PP), at least 2 of the points are all in &; or all
in &. By symmetry, say X,Y € &;.

Since YX 1 AB and since we assume the condition (*), no points in
AB\{X} can be in &; i.e., all points in AB\{X} must be in &. The
latter, in turn, implies that C ¢ &; and Z ¢ &; (why?); i.e.,, C,Z € &;. But
then we have {C, Z,Y} C &;, and they form a right-angled triangle. This,
however, contradicts (). The proof is thus complete. g

For more examples and a special application of (PP) to map-colouring

problems, the reader may like to read the excellent expository article [Re]
by Rebman.
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3.4. Ramsey Type Problems and Ramsey Numbers

In this section, we shall continue to apply (PP) to solve a class of problems
that are of a different flavour from the previous ones. The study of these
problems leads to the introduction of a famous class of numbers, called
Ramsey numbers.

To begin with, we first state an IMO problem, that was proposed by
Hungarian representatives in the 6th IMO, held in Russia in 1964.

Example 3.4.1 (IMO, 1964/4) Seventeen people correspond by mail
with one another — each one with all the rest. In their letters only three
different topics are discussed. Each pair of correspondents deals with only
one of these topics. Prove that there are at least three people who write to
one another about the same topic.

We shall solve this problem later on. To make it easier to follow the
solution, let us first mention two simpler but related problems.

Example 3.4.2. Prove that at a gathering of any six people. Some
three of them are either mutual acquaintances or complete strangers to one
another.

The above problem was proposed by Bostwick of Maryland, USA, in
1958 as Problem E 1321 in the American Mathematical Monthly, 65 (1958),
446. As shown in the American Mathematical Monthly, 66 (1959), 141-
142, Example 3.4.2 received much attention, and various solutions were
provided. It was further pointed out by someone there that Example 3.4.2
could indeed be reduced to the following problem.

Example 3.4.3. Six points are in general position in space (no three
in a line, no four in a plane). The fifteen line segments joining them in
pairs are drawn, and then painted with some segments red and the rest
blue. Prove that some triangle has all its sides the same colour.

Example 3.4.3 first appeared as a competition problem in Hungary in
1947, and was also a problem in the William Lowell Putnam Mathematical
Competition (for undergraduates in North America) that was held in 1953.

Let us first prove Example 3.4.3 by apply (PP).
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A

D

Figure 3.4.1.

Proof of Example 3.4.3. Figure 3.4.1 shows a configuration with
6 vertices (or points) in which every two are joined by an edge (or a line
segment). Each of these (g) = 15 edges is coloured by one of the two
colours: blue and red.

Consider the vertex A. The 5 edges incident with A (namely,
AB,AC,AD,AE and AF) are each coloured by either blue or red. By
(PP), one of the colours, say blue, is used to colour at least 3 of these
5 edges. By symmetry, assume that AB, AC and AD are coloured blue.
Consider now the 3 edges BC, BD and CD. If any one of them (say BC)
is coloured blue, then we have a “blue triangle” (namely, ABC). If none of
them is coloured blue, then the 3 edges must be coloured red, and in this
case, we have a “red triangle” BCD. g

We now proceed to prove Example 3.4.2.

Proof of Example 3.4.2. Represent the 6 people by 6 vertices
A,B,...,F as shown in the configuration of Figure 3.4.1. Given any 2 peo-
ple X and Y, the edge joining X and Y is coloured blue (resp., red) if X
and Y are acquaintances (resp., strangers). By Example 3.4.3; there exists
in the resulting configuration either a “blue triangle” or a “red triangle”.
In other words, there are 3 mutual acquaintances or 3 mutual strangers. g

We are now in a position to solve the IMO problem mentioned earlier.

Proof of Example 3.4.1. We represent the 17 people by 17 vertices
A,B,C,..., in which every two are joined by an edge. An edge joining
two vertices X and Y is coloured blue (resp., red and yellow) if X and Y
discuss topic I (resp., IT and II). Consider the vertex A. By assumption,
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the 16 edges incident with A are each coloured by exactly one of the 3
colours: blue, red and yellow. Since 16 = 5-3 + 1, by (PP), one of the
colours, say blue, is used to colour at least 5+ 1(= 6) edges. By symmetry,
assume that AB, AC,AD,AE,AF and AG are coloured blue. Consider
now the configuration consisting of 6 vertices B,C,...,G, together with
the 15 edges joining all pairs of the 6 vertices. If any one these edges, say
BC, is coloured blue, then we have a “blue triangle”, namely ABC. If none
of them is coloured blue, then the 15 edges must be coloured red or yellow.
But then by Example 3.4.3, there is in this configuration a “red triangle”
or a “yellow triangle”. In any event, there is a triangle having all its edges
the same colour. This means that there are at least 3 people who discuss
the same topic with one another. g

Though the IMO problem has been solved, we cannot help but carry on
the story.

Let us revisit Example 3.4.3. Suppose now we have only 5 vertices
(instead of 6) in the problem. Is the conclusion still valid? To see this,
consider the configuration of Figure 3.4.2 which consists of 5 vertices and
10 edges. If the edges AB,BC,CD,DE and EA are coloured blue while
the rest red as shown, then the resulting configuration contains neither blue
triangles nor red triangles. This shows that 6 is the minimum number of
vertices that are needed in a configuration in order to ensure the existence
of a triangle coloured by the same colour if each edge of the configuration
is coloured by one of the two given colours.

Figure 3.4.2.
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The above discussion serves as a motivation for us to introduce a class
of numbers, known as Ramsey numbers.

A clique is a configuration consisting of a finite set of vertices together
with edges joining all pairs of vertices. A k-clique is a clique which has
exactly k vertices. Thus a 1-clique is a vertex, a 2-clique is an edge joining
2 vertices and a 3-clique looks like a triangle. The configuration of Figure
3.4.2 is a 5-clique and that of Figure 3.4.1 is a 6-clique. Given p, ¢ € N, let
R(p, q) denote the smallest natural number “n” such that for any colouring
of the edges of an n-clique by 2 colours: blue or red (one colour for each
edge), there exists either a “blue p-clique” or a “red g¢-clique”.

Thus, as shown above, we have R(3,3) = 6. The following equalities
follow directly from the definition:

R(p,q) = R(g,p)
R(1,9)=1 (3.4.1)
R(2,9)=gq.

The numbers R(p, q) are called Ramsey numbers, in honour of the En-
glish philosopher Frank P. Ramsey (1903-1930), who proved around 1928 a
remarkable existence theorem [Ra] that includes the following as a special
case.

Theorem 3.4.1. (Ramsey’s Theorem) For all integers p,q > 2,
the number R(p, q) always exists.

Ramsey died of complications following an abdominal operation in 1930
before his 27th birthday. In 1983, a special issue of the Journal of Graph
Theory (Vol.7 No.1) was dedicated to the memory of Ramsey on the occa-
sion of the 80th anniversary of his birth.

3.5. Bounds for Ramsey Numbers

The determination of the exact values of R(p,q), where p and g are large, is
far beyond our research. In this section, we present some bounds for R(p, )
that may be useful in estimating these numbers. The following recursive
upper bound for R(p,q) was obtained by two Hungarian mathematicians
Erdds and Szekeres [ES] (see also Greenwood and Gleason [GG]).
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Theorem 3.5.1. For all integers p,q > 2,

R(p,q9) < R(p—1,9)+ R(p,q - 1).

Before proving this theorem, we state the following Generalized Pigeon-
hole Principle:

The Generalized Pigeonhole Principle (GPP).

Let n,ky, k3, ...k, € N. If by + k2 + -- -k, — (n — 1) or more
objects are put into n boxes, then either the first box contains at least
k1 objects, or the second box contains at least k; objects, ..., or the
n th box contains at least k, objects.

Proof of Theorem 3.5.1. Let n = R(p—1,9) + R(p,q — 1). Since
R(p, q) always exists by Theorem 3.4.1, to show that R(p, q) < n, we need
only to prove that for any colouring of the edges of an n-clique K,, by
2 colours: blue and red, there exists either a “blue p-clique” or a “red
g-clique”.

Fix a vertex, say v in K,,. Then v is incident with n—1 = R(p—1,9) +
R(p,q —1) — 1 edges in K,,. By (GPP), either R(p — 1, q) of the edges are
coloured blue or R(p, g — 1) of the edges are coloured red, say the former.

Let X be the set of vertices of K,,, other than v, which are incident
with these R(p — 1,q) blue edges. Since |X| = R(p — 1, ¢), by definition,
the clique induced by X contains either a blue (p — 1)-clique or a red ¢-
clique. If it contains a red g-clique, then we are through. If it contains
a blue (p — 1)-clique, then the clique induced by X U {v} contains a blue
p-clique. g

The inequality in Theorem 3.5.1 can be slightly improved under an
additional condition.

Theorem 3.5.2. [GG] For all integers p,q > 2, if R(p — 1,9) and
R(p,q— 1) are even, then

R(p,q) < R(p—-1,9)+ R(p,q—1)- 1.
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Proof. Let m = R(p—1,q9)+R(p,q—1)—1 and let K, be an m-clique
in which the () edges are coloured blue or red. Fix an arbitrary vertex
win Kp,. Then w is incident with m — 1 edges. If R(p — 1, ¢) or more of
the edges are blue, then as shown in the above proof, there is either a blue
p-clique or ared g-clique in Kp,. Likewise, if R(p,q—1) or more of the edges
are red, then we are again through. It remains to consider the following
case: there are exactly R(p — 1,¢) — 1 blue edges and R(p,q — 1) — 1 red
edges incident with each vertex v in K,,. We claim that this is impossible.

Indeed, if this were the case, then the number of blue edges in K,,, would
be

m
5 {R(p-1,9)-1}.
Since R(p — 1,9) and R(p,q — 1) are even, both m and R(p — 1,¢) — 1 are

odd, and so the above number is not an integer, a contradiction. The proof
is thus complete. g

By applying Theorem 3.5.1, it is not hard to prove, by induction on
P+ g, the following result:

If p,q > 2, then R(p,g) < (P}77). (3.5.1)

When p = 3, inequality (3.5.1) becomes

R(3,9) < %(q2 +9).

However, by applying Theorems 3.5.1 and 3.5.2, the following sharper
bound can be derived (see Problem 3.33):

For ¢ €N, R(3,9) < 3(¢* +3). (3.5.2)
When p = ¢ > 3, we also have:

p-2%

——— < R(p,p) <4R(p -2, 2. 3.5.3

e (p,p) <4R(p—2,p) + (3.5.3)
The above upper bound for R(p, p) was given by Walker [W] while the lower

bound was proved by Erdés [E] using a probabilistic method.

As an example, let us show how Theorem 3.5.2 can be applied to obtain
the exact value of R(3,4).
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We know that R(2,4) = 4 by (3.4.1) and R(3,3) = 6: Since both
numbers are even, we have by Theorem 3.5.2

R(3,4) < R(2,4)+ R(3,3) - 1=9.

We claim that R(3,4) > 9. To see this, consider the 8-clique of Figure 3.5.1.
By colouring the edges AB, BC,CD,DE,EF,FG,GH,HA, AE,BF,CG
and DH blue and the rest red, it can be checked that the resulting config-
uration contains neither a “blue 3-clique” nor a “red 4-clique”. This shows
that R(3,4) > 9. Hence we have R(3,4) = 9.

Figure 3.5.1.

Note. The following points should be borne in mind. To show that
R(p,q) < n, we may apply known inequalities or show by definition that
every n-clique in which the edges are coloured blue or red contains either a
blue p-clique or a red g-clique. On the other hand, to show that R(p, ¢) > n,
we may construct an n-clique K, and colour the ('2') edges blue or red in a
specific way so that K, contains neither blue p-clique nor red g-clique.

Some known exact values or bounds for R(p,q) when p and g are small
are contained in Table 3.5.1 (see [CG], [GRS] and [MZ]). Grinstead and
Roberts [GR] showed that 28 < R(3,8) < 29. In the recent article [MZ],
McKay and Zhang proved that R(3,8) = 28. It was also reported in [CL]
that R(4,8) > 52.
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4 9 3 4 5 6 7 8 9 10

3 (6 9 14 18 23 28 36 40-43
4 18 25-28 34-44

5 42-55 57-94

6 102-169

7 126-586

Table 3.5.1

A Generalization. The definition of the Ramsey number R(p, ¢) with
2 parameters can be generalized in a natural way to the Ramsey number
R(p1,p2, ..., px) with k parameters as follows. Let k,p1,ps3,...,pr € N with
k > 3. The Ramsey number R(p1,p2,...,pr) is the smallest natural number
n such that for any colouring of the edges of an n-clique by k colours:
colour 1, colour 2, ..., colour k, there exist a colour i (i = 1,2,...,k) and a
pi-clique in the resulting configuration such that all edges in the p;-clique
are coloured by colour i.

The result of Example 3.4.1 shows that R(3,3,3) < 17. In 1955, Green-
wood and Gleason [GG] proved by construction that R(3,3,3) > 17. Thus
R(3,3,3) = 17. Surprisingly enough, this is the only exact value known up
to date for R(p1,p2,...,pr) when k > 3 and p; > 3 foreach i =1,2,... k.

Final remarks. We have by now introduced some very basic knowl-
edge of Ramsey numbers and shown how they are linked to (PP) and
(GPP). The theory of Ramsey numbers forms in fact a tiny part of the
more profound and more general Ramsey theory of structures. One may
obtain a rough scope of this general theory from the book [GRS] by Gra-
ham, Rothschild and Spencer. Just like other theories in combinatorics,
the theory of Ramsey numbers can also find applications in other areas.
An introduction of applications of Ramsey numbers to areas such as num-
ber theory, geometry, computer science, communication, decision making,
etc. can be found in Chapter 8 of Roberts’ book [12]. Readers are also
encouraged to read the two expository articles [G] and [GS] on Ramsey
Theory.

As a result of numerous contributions from Ramsey theoreticians, Ram-
sey theory has now been recognized as a cohesive, established and growing
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branch of combinatorics and graph theory, that in no way could have been
anticipated by Frank Ramsey when he read to the London Mathematical
Society his celebrated article [Ra) in 1928 at the age of 24, two years before
he left the world.

Exercise 3

1.

Show that among any 5 points in an equilateral triangle of unit side
length, there are 2 whose distance is at most % units apart.

. Given any set C of n + 1 distinct points (n € N) on the circumference

of a unit circle, show that there exist a,b € C,a # b, such that the
distance between them does not exceed 2sin Z.

. Given any set S of 9 points within a unit square, show that there always

exist 3 distinct points in S such that the area of the triangle formed by
these 3 points is less than or equal to -é-. (Beijing Math. Competition,
1963)

Show that given any set of 5 numbers, there are 3 numbers in the set
whose sum is divisible by 3.

. Let A be a set of n 4+ 1 elements, where n € N. Show that there exist

a,b € A with a # b such that n|(a — b).

. Let A = {a1,a2,---,a2k41}, where k > 1, be a set of 2k + 1 posi-

tive integers. Show that for any permutation a;,a;, . ..ai,,,, of A, the

product
2k+1

IJ; (ai; — a5)

is always even.

. Let AC {1,2,...,2n} such that |A| = n+ 1, where n € N. Show that

there exist a,b € A, with a # b such that alb.

. Let A be a subset of {1,2,...,2n} such that |A| = n + 1. Show that

there exist a,b € A such that a and b are coprime.

. Show that among any group of n people, where n > 2, there are at least

two people who know exactly the same number of people in the group
(assuming that “knowing” is a symmetry relation).
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10.

11.

12.

13.

14.

15.

16.

17.

Ezercise 8

Let C = {r1,r2,...,Ta+1} be a set of n + 1 real numbers, where 0 <
r; < 1for each ¢ = 1,2,...,n + 1. Show that there exist rp,r, in C,
where p # g, such that |r, —r | < L.

Show that given any set A of 13 distinct real numbers, there exist z,y €
A such that

z-Y
0 <2-v3.
< Ty S V3
Consider a set of 2n points in space, n > 1. Suppose they are joined by
at least n?+1 segments. Show that at least one triangle is formed. Show
that for each n it is possible to have 2n points joined by n? segments
without any triangles being formed. (Putnam, 1956)

Let there be given nine lattice points (points with integral coordinates)
in the three dimensional Euclidean space. Show that there is a lattice
point on the interior of one of the line segments joining two of these
points. (Putnam, 1971)

(i) A point (a1, az) in the z — y plane is called a lattice point if both a;
and as are integers. Given any set L, of 5 lattice points in the z — y
plane, show that there exist 2 distinct members in L, whose midpoint
is also a lattice point (not necessarily in Lj).

More generally, we have:

(ii) A point (a1, as,...,a,) in the space R", where n > 2 is an integer,
is called a lattice point if all the a;’s are integers. Show that given any
set L, of 2" 4 1 lattice points in R", there exist 2 distinct members in
L,, whose midpoint is also a lattice point (but not necessarily in Ly).

Let A be any set of 20 distinct integers chosen from the arithmetic pro-
gression 1,4,7,...,100. Prove that there must be two distinct integers
in A whose sum is 104. (Putnam, 1978)

Let A be a set of 6 points in a plane such that no 3 are collinear. Show
that there exist 3 points in A which form a triangle having an interior
angle not exceeding 30°. (26th Moscow MO)

Let n > 3 be an odd number. Show that there is a number in the set
{2t -1,22-1,...,2"" 1 -1}

which is divisible by n. (USSR MO, 1980)
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19.

20.

21.

22.
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There are n people at a party. Prove that there are two people such
that, of the remaining n — 2 people, there are at least |[n/2] — 1 of
them, each of whom either knows both or else knows neither of the two.
Assume that “knowing” is a symmetric relation, and that |z] denotes
the greatest integer less than or equal to . (USA MO, 1985/4)

For a finite set A of integers, denote by s(A) the sum of numbers in A.
Let S be a subset of {1,2,3,...,14,15} such that s(B) # s(C) for any
2 disjoint subsets B,C of S. Show that |S| < 5. (USA MO, 1986)

In the rectangular array
a1 @2 ... Qin
asy aso e Aopn
Ami @m2 ... Gmn

of m x n real numbers, the difference between the maximum and the
minimum element in each row is at most d, where d > 0. Each column
is then rearranged in decreasing order so that the maximum element of
the column occurs in the first row, and the minimum element occurs in
the last row. Show that in the rearranged array the difference between
the maximum and the minimum elements in each row is still at most d.
(Swedish Math. Competition, 1986)

We are given a regular decagon with all diagonals drawn. The number
“+1” is attached to each vertex and to each point where diagonals
intersect (we consider only internal points of intersection). We can
decide at any time to simultaneously change the sign of all such numbers
along a given side or a given diagonal. Is it possible after a certain
number of such operations to have changed all the signs to negative?
(International Mathematics Tournament of the Towns, Senior, 1984)

In a football tournament of one round (each team plays each other
once, 2 points for win, 1 point for draw and 0 points for loss), 28 teams
compete. During the tournament more than 75% of the matches finished
in a draw. Prove that there were two teams who finished with the
same number of points. (International Mathematics Tournament of the
Towns, Junior, 1986)
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23.

24.

25.

26.

27.

Ezercise 8

Fifteen problems, numbered 1 through 15, are posed on a certain exami-
nation. No student answers two consecutive problems correctly. If 1600
candidates sit the test, must at least two of them have the identical an-
swer patterns? (Assume each question has only 2 possible answers, right
or wrong, and assume that no student leaves any question unanswered.)

(24th Spanish MO, 1989)

Suppose that a; < a2 < -+ < a, are natural numbers such that a; +
-+++a, = 2n and such that a, # n+1. Show that if n is even, then for
some subset K of {1,2,...,n} it is true that ),z a; = n. Show that
this is true also if n is odd when we make the additional assumption
that a, # 2. (Proposed by J. Q. Longyear, see Amer. Math. Monthly,
80 (1973), 946-947.)

Let X be a nonempty set having n elements and C be a colour set with
p > 1 elements. Find the greatest number p satisfying the following
property: If we colour in an arbitrary way each subset of X with colours
from C such that each subset receives only one colour, then there exist
two distinct subsets A, B of X such that the sets A, B, AUB, ANB have
the same colour. (Proposed by I. Tomescu, see Amer. Math. Monthly,
95 (1988), 876-877.)

Consider the system of p equations in ¢ = 2p unknowns z;,zs,...,z,:
a11z1 + a1222 + - -- +ajz, =0
a1 ry + agzz2 + - - +azz, =0
@517y + apaza + - -+ +apgzy =0

with every coefficient a;; a member of the set {—1,0,1}. Prove that the
system has a solution (z;,2,,...,z,) such that

(a) allz; ( =1,2,...,q) are integers,

(b) there is at least one value of j for which z; # 0,

©) lzjl<e (=1,2,...,9).

(IMO, 1976/5)

An international society has its members from six different countries.
The list of members contains 1978 names, numbered 1,2,...,1978.
Prove that there is at least one member whose number is the sum of the
numbers of two members from his own country, or twice as large as the
number of one member from his own country. (IMO, 1978/6)



28.

29.

30.

31.

32.

33.

34.
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37.
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Let p,g € N. Show that in any given sequence of R(p, ¢) distinct inte-
gers, there is either an increasing subsequence of p terms or a decreasing
subsequence of ¢ terms.

Show that given any sequence of pg + 1 distinct real numbers, where p
and g are nonnegative integers, there is either an increasing subsequence
of p+ 1 terms or a decreasing subsequence of g + 1 terms. (P. Erdos
and G. Szekeres (1935))

Show that

(a) R(p,q) = R(q,p), for all p,g € N;

(b) R(2,9) = ¢, for allg € N.

Let p,p',q,¢’ € N with p’ < p and ¢’ < ¢. Show that
(i) R(p',¢') < R(p,9);

(ii) R(p—1,9) < R(p,q) — 1 for p2>2;

(iii) R(p',¢') = R(p,q) iff p=p and ¢ =gq.

For p, ¢ € N, show that

R(p,q) < (p:E_2)-

1
Show that 1
R(3,9) < 5(a* +3)
for ¢ > 1.
Show that R(3,5) = 14.
Show that

(a) R(4,4) < 18,

(b) R(3,6) < 19.

Show that

(a) R(p1,p2,---,pk)=1if p; =1for some i € {1,2,...,k};
(b) R(p,2,2,...,2) =pforp> 2.

Let k,p1,p2,...,pr € N with k£ > 2. Show that

R(plap2’ oo )pk) = R(Pl;PZ: .. -:Pk,2)-
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38.

39.

40.

41.

42.

43.

44.

FEzercise 8

Given any k integers p; > 2,i=1,2,...,k, where k > 2, show that

k
R(p1,p2,---,P8) < ) R(p1, -, Pic1,Pi — 1,Big1, -, pe) — (k — 2).

i=1

Let k € N,py,pa,...,px € N* and p = ZLI p;- Show by induction on
p that

p!
nlp!...pe!

For k € N with k > 2, let Ry denote R(3,3,...,3). Show that
k

R(p1+1,p2+1,...,; +1) <

(a) (l) Ry < ,C(Rk_l - 1) + 2 for k > 3;

(1) Re < |kle] +1;

(iil) R4 < 66.
(R. E. Greenwood and A. M. Gleason, Canad. J. Math., 7 (1955), 1-7.)
(b) Ry > 2% +1.
Let £k € N and let {S1,52,...,S:} be any partition of the set
N, = {1,2,...,n}, where n = R(3,3,...,3). Show that there exist

k

i €{1,2,...,k}, and some integers a, b, ¢ (not necessarily distinct) in S;
such that a+ b =c.

Show that

(i) R(3,3,2) = 6,

(ii) R(3,3,3) < 17. (See also Example 3.4.1.)

A p-clique is monochromatic if all its edges are coloured by the same
colour.

(a) Show that for any colouring of the edges of the 6-clique K¢ by 2
colours: blue or red, there are at least two monochromatic 3-cliques
(not necessarily disjoint).

(b) Give a colouring of the edges of K¢ by 2 colours such that there are
no three monochromatic 3-cliques.

The edges of the 7-clique K7 are coloured by 2 colours: blue or red. Show
that there are at least four monochromatic 3-cliques in the resulting
configuration.
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45. Given any colouring of the edges of an n-clique K,(n € N,n > 3) by 2
colours, let T'(n) denote the number of monochromatic 3-cliques in the
resulting configuration. Show that

Tk(k—1)(k—2) ifn=2k,
T(n) > 2k(k—1)(4k+1) ifn=4k+1,
Zk(k+1)(4k—1) ifn=4k+3.

46. Each of the 36 line segments joining 9 distinct points on a circle is
coloured either red or blue. Suppose that each triangle determined by 3
of the 9 points contains at least one red side. Prove that there are four
points such that the 6 segments connecting them are red. (Canadian
MO, 1976)
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Chapter 4

The Principle of Inclusion and Exclusion

4.1. Introduction

The addition principle (AP) was stated at the beginning of Chapter 1. Its
simplest form may be addressed as follows:

If A and B are finite sets such that AN B = 0,
then |AU B| = || + |B.

What is the corresponding equality for |JAUB|if ANB #0? If ANB # 0,
then in the counting of |A| and |B|, the elements in A N B are counted
exactly twice. Thus we have (see also Figure 4.1.1):

|AU B| = |A|+|B| - |An B| (4.1.1)

Figure 4.1.1.

As we have seen in the previous chapters, in solving certain more compli-
cated counting problems, the sets whose elements are to be enumerated
are usually divided into appropriate disjoint subsets so that (AP) can be
directly applied. However, the task of dividing a set into such disjoint sub-
sets may not be easy. Formula (4.1.1) provides us with a more flexible way:

145
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Express the given set as AU B, where A and B need not be disjoint, and
then count |A], |B| and |A N B| independently. The ‘inclusion’ of |A| and
|B| and the ‘exclusion’ of |AN B| in Formula (4.1.1) will automatically give
us the desired result for |[AU B|.

Formula (4.1.1) is the simplest form of the so-called Principle of Inclu-
sion and Ezclusion (PIE), which we are going to study in the chapter. In
Section 2 below, we shall extend formula (4.1.1) for 2 sets to a formula for
n sets, n > 2. A much more general result which includes the latter as a
special case will be established in Section 3. Applications of this general
result to various classical enumeration problems will be discussed in the
remaining sections.

4.2. The Principle

To begin with, let us see how we can apply (4.1.1) to get a corresponding
formula for |AU B U C|, where A, B and C are three arbitrary finite sets.

Observe that
[AUBUC|=|(AUB)UC] (associative law)

=|AUB|+|C|-|(AUB)NC| (by (4.1.1))

=|AUB|+|C|-|(ANC)U(BNC)| (distributive law)

=|A|+|B|-1ANB|+|C|
—(lAnC|+|BNnC|-|(ANC)N(BNC)|) (by (4.1.1))

=(JAl+|B|+ICl)-(JANnB|+|ANC|+|BNC|)
+|ANnBNC|.

Thus we have:
[AUBUC| = (|A|+|B|+|C])-(|ANB|+|ANC|+|BNC|)+|ANBNC)|. (4.2.1)
As a matter of fact, we have the following general result.
Theorem 4.2.1. (PIE) For any q finite sets Ay, A3, ..., Aq, ¢ > 2,
[A1UA2U---UA,|
=2q:|A;|—E|A;nAj|+ > AN AN A (4.2.2)
i=1

i<j i<j<k
— e+ (=D)AL N AN N4
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Theorem 4.2.1 can be proved by induction on ¢q. This proof is left to
the reader (see Problem 4.7). Instead, we shall prove a more general result
in Section 3 which includes Theorem 4.2.1 as a special case.

Example 4.2.1. Let S = {1,2,...,500}. Find the number of integers
in S which are divisible by 2, 3 or 5.
Before solving the problem, two observations are in order.
(1) For each n € N, the number of integers in S which are divisible by (or
multiples of) n is given by [332].
(2) For a,b,c € N, c is divisible by both a and b if and only if ¢ is divisible
by the LCM of a and b.
Bearing these in mind, you will find it easy to follow the solution given
below.

Solution. For each k € N, let
B, = {z € S| z is divisible by k}.

Thus, our aim is to find |B, U B3 U Bs|.
To apply (PIE), we first need to perform the following computations.
By observation (1),

|Bz|= T =250,

| B3| = &30 = 166,

and 1Bs| = | 22| = 100.
[ 5

By observations (1) and (2),

500
|B2 N Bs| = |Bg| = l—J = 83,

6
500

|Bz ﬂBsI = IBIOI = lWJ = 50,
500

|Ba n le = |315| = l—15— = 33,
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and |B2 N B3N Bs| = |Bso| = l%J = 16.

Now, by (PIE),

|B2 U B3 U Bs| = (|B2|+|Bs|+|Bs|)—(|B2 N B3|+ |B2 N Bs|+|Bs N Bs|)
+|B2 N B3 N Bs|
= (250 + 166 + 100) — (83 + 50 + 33) + 16
=366. g

4.3. A Generalization

In Example 4.2.1, we have counted the number of integers in S =
{1,2,...,500} which are divisible by at least one of the integers 2, 3, 5.
We may ask further related questions. For instance, how many integers are
there in S which are divisible by

(1) none of 2, 3, 57

(2) exactly one of 2, 3, 57

(3) exactly two of 2, 3, 57

(4) all of 2, 3, 57
For easy reference, we show in Figure 4.3.1 the desired sets corresponding
to the above questions.

Figure 4.3.1.

The above questions cannot be solved directly by Theorem 4.2.1. In
this section, we shall establish a general result which enables us to provide
direct solutions to questions of this type.
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Before proceeding any further, we first note the following. Let S be a
given universal set. Then any subset A of S induces a property P such that,
for any z € S,

x possesses the property P & <z € A.

For example, if S = {1,2,...,,10} and A = {1,2,3,4}, then A= {z € S |
z possesses P}, where the property P may be taken to be “< 5”. On the
other hand, any property P of elements of S determines a subset A of S
such that the elements of A are precisely those possessing P. For instance,
if $ = {1,2,...,10} and P is the property of being “divisible by 3", then
P determines the subset {3,6,9} of S. In view of this, it is reasonable
for us to use the term “properties” to replace “subsets” in the following
generalization. An advantage of this replacement is that the statements or
formulae concerned can be substantially simplified.

In what follows, let S be an n-element universal set, and let Py, P, ..., P,
be g properties for the elements of S, where ¢ > 1. It should be clear that a
property may be possessed by none, some or all elements of S; and on the
other hand, an element of S may have none, some or all of the properties.

For integer m with 0 < m < ¢, let E(m) denote the number of ele-
ments of S that possess ezactly m of the ¢ properties; and for 1 <m < g,
let w(P;, P;, - - - P;,,) denote the number of elements of S that possess the
properties P;,, P;,,..., P; ., and let

m)

w(m) =Y (W(P, Py -+ Bi,,),

where the summation is taken over all m-combinations {i,42,...,im} of
{1,2,....,q}.
We also define w(0) to be |S|; i.e., w(0) = |S| = n. The result that we wish

to establish is the following generalized principle of inclusion and exclusion
(GPIE).



150 Section 4.9. A Generalization

Theorem 4.3.1. (GPIE) Let S be an n-element set and let
{P1,Ps,...,P,} be a set of q properties for elements of S. Then for each
m=0,1,2,..,4,

B(m) =a(m) = (" Datm+ 1)+ ("3 u(m+2)
e S 00
- zq:(—l)"’"‘(k)w(k). (43.1)

m
k=m

We illustrate this result with the following example.

Example 4.3.1. Let S = {1,2,..,,14}, and let P,, P>, Ps and P, be 4
given properties. Assume that an element j € S possesses the property P;
if and only if the (i, j) entry in Table 4.3.1 is indicated by a tick “\/”.

sll1|2]|3]|4]|5|ef7|8|9|10]{11]|12{13]14
Ay v VALV v

IVIVIVE W WL VIV LY
PV IV Vivi I/ Vv
AV IV vi VIV v

Table 4.3.1.

Consider the property P;. Since there are 5 elements of S (namely, 1,
4, 8, 9 and 12) having this property, we have w(P,) = 5. Consider the
properties P, and P3. Since there are 4 elements of S (namely, 1, 3, 8 and
11) having both P, and P;, we have w(P,P;3) = 4. Checking through the
table, we have the following data:

w(P) =35, w(P) =9, w(Ps) = 6, w(Py) = 6;
w(Ple) = 3, w(P1P3) = 3, w(P1P4) = 2,
w(P2P3) = 4, w(P2P4) = 5, w(P3P4) = 5;

Ww(PiP,P3) =2, w(PP,Py)=2, w(P\PsPy) =2, w(P,PsPy)=4;
w(P1P2P3P4) = 2.
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Thus, by definition,

w(0) = |S| = 14,
4

w(1)=) w(P)=5+9+6+6= 26,
i=1

w2) =Y w(PP)=3+3+2+4+5+5=22,
i<j

w@)= Y w(PPP)=2+2+2+4=10,
i<j<k

w(4) = w(P1P2P3P4) =2.
On the other hand, by scrutinizing the table again, we find

E(0) = 2 (elements 5 and 7), E(1) = 4 (elements 2, 6, 12, 13),
E(2) =4 (elements 4,9, 10, 14), E(3) =2 (elements 3, 11)’
E(4) = 2 (elements 1, 8).

Suppose m = 0. Observe that the RHS of identity (4.3.1) is

w(0) —w(l) + w(2) —w(3) + w(4)
=14-264+22-10+2=2,

which agrees with E(0).
We leave it to the reader to verify identity (4.3.1) for m =1,2,3. g
We are now ready to prove Theorem 4.3.1.

Proof. We shall show that each z € S contributes the same “count”,
either 0 or 1, to each side of the equality (4.3.1).

Let x € S be given. Assume that z possesses ezactly t properties.
Case 1. t < m. Clearly, z contributes a count of 0 to both sides.

Case 2. t = m. In this case, z is counted once in E(m). On the other
hand, z contributes 1 to w(m) but 0 to w(r) for r > m. Thus z contributes
a count of 1 to both sides.

Case 3. t > m. Now, z contributes a count of 0 to E(m). On the other
hand, z is counted

t . .
m times in  w(m),
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t . .
(m + 1) times in  w(m + 1),

AN
(t) times in  w(t);

but z contributes 0 to w(r) for r > ¢.

Thus the count that z contributes to RHS is given by

A= (:1) (" 1) (mil) * (mr: ) (me) =+ (1) (:)

It remains to show that the value of X is equal to 0. Indeed, since

- BE=C6) |
2= ()= () (T )T e () ()
= (W {-(T)+(7) e ()}

which is 0 by identity (2.3.2). The proof is thus complete. g

As we shall see later, Theorem 4.3.1 is particularly useful when m = 0.

Corollary 1. E(0) = w(0) — w(1) +w(2) — - - + (-1)%w(g) (4.3.2)

q
=Y (~)fuw(k). u

k=0
Corollary 2. Let Ay, A,...,A; be any q subsets of a finite set S.
Then

[AinA;n---nA4,|
q
= |S|—Z|A;|+Z|A.-0Aj|— Z |4 NA; N Ag| +---
i=1 i<j i<j<k
+(—1)q|A1 nAgn“'nAql,

where A; denotes the complement of A; in S (i.e., A; = S\A;).
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Proof. For each i =1,2,...,q, define a property P; by saying that an
element z of S possesses P; if and only if z € A;. Then

q
w0) =18,  w(1)=_ |4,

=1
q9
w(2) =Y 1A N4j),...,w(g) = ﬂAi‘,
i<j i=1
and E(0) = hfi, .
i=1

With these, Corollary 2 now follows from Corollary 1. g

We leave it to the reader to show that Theorem 4.2.1 now follows from
Corollary 2. (see Problem 4.7).

In solving some complicated enumeration problems in which several
properties are given, students may make mistakes by ‘under-counting’ or
‘over-counting’ in the problems. The significance of applying (PIE) or
(GPIE) is this: We split such a problem into some simpler sub-problems,
and the principle itself will automatically take care of the under-counting
or over-counting. This point will be illustrated in many examples given in
the remaining sections.

Historically, Theorem 4.2.1 was discovered by A. de Moivre in 1718 and
its corresponding result in probability theory was found by H. Poincaré
in 1896. The formulae given in Corollaries 1 and 2 to Theorem 4.3.1 were
obtained independently by D.A. da Silva in 1854 and J.J. Sylvester in 1883.
The probabilistic form of Theorem 4.3.1 was established by C. Jordan in
1927. For more details about the history and further generalizations of
(PIE), the reader may refer to Takacs [T].

4.4. Integer Solutions and Shortest Routes

In this section, we give two examples, one on integer solutions of linear

equations and the other on shortest routes in rectangular grids, to illustrate
how (GPIE) could be applied.
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Example 4.4.1. Find the number of nonnegative integer solutions to
the equation ,
21+532+333=15 (1)

\
where 1 <5, z2 <6and 23 < 7. \

We learned in Chapter 1 that the number of nonnegative integer solu-
tions to (1) (without any further condition) is given by

15+3-1\ _ (17
(*%7)-()

The upper bounds “z; < 5, 23 < 6, £3 < 7” imposed in the problem
make it not so straightforward. How can we cope with it? Notice that
the problem of counting integer solutions of a linear equation is easy if the
values of the variables are not bounded above. This then suggests that we
may tackle the problem indirectly by considering the “complements” of the
given upper bounds, which are “z; > 6,z9 > 7,z3 > 8”. In the following
solution, we shall see how this idea can be incorporated with (GPIE) to
solve the problem.

«

Solution. Let S be the set of nonnegative integer solutions of (1),
namely S = {(a1,az2,a3) | a; € N* a1 + a3 + azg = 15}. We define 3
properties for elements of S. An element (a;,a3,a3) in S is said to possess
the property

P1¢>0126:
P2¢-‘>0227,
and P3¢-)0328.

Thus the number of integer solutions to (1) satisfying the requirement is
the number of elements of S which possess none of the properties Py, P,
and Ps. This number is exactly E(0) in (GPIE).

We now apply Corollary 1 to Theorem 4.3.1 to determine E(0). First
of all, we need to find w(i), i = 0,1,2,3. Observe that

w@=Isi= (427N = (5);
w(1) = w(Py) + w(Py) + w(Ps)



Chapter 4. The Principle of Inclusion and Ezclusion 155

_ ((15—-6)2+3-1) N ((15—7)2+3-1)
+ ((15—8)2+3—1)

=(3)+(2)+ ()
w(2) = w(Pl P2) + w(P1P3) + w(P2P3)
15-6— -1 15-6-— -
=(( 27)+3 )+((‘ 28)+3 1)
.\ ((15—7—28)+3—1)

-(2)+()+G)
and  w(3)=w(PP:Ps)=0.

Hence, E(0) = w(0) —w(1) +w(2) —w(3) = (3) - (3) - (3) - Q) + (5) +

AD+0G- n

Remarks. (1) To apply Theorem 4.3.1, we first have to know what
the universal set S is in the problem, and then define “appropriate” proper-
ties for elements of S. In the above example, the properties we introduced
are “complements” of the requirements: z; < 5, z3 < 6, z3 < 7 so that
the desired integer solutions are the elements of S which possess “none” of
the properties. Thus E(0) is our required answer. The remaining task of
computing E(0) by formula is just a mechanical one.

(2) Using (GPIE) often enables us to obtain a more direct solution to a
problem, as illustrated in the example above. However, this does not imply
that the solution is always simple. For instance, we are able to provide a
simpler solution to the problem in Example 4.4.1. We first introduce new
variables ¢1,%; and t3 by putting

thh=5—1z,
t2 =6—zo,
and t3=7—£3.

Then the equation z1 + z3 + z3 = 15 becomes t; + t2 + t3 = 3 and the
constraints 1 < 5, 2 < 6 and 3 < 7 become 0 <t; < 5,0 <t; <6 and
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0 < t3 < 7, which are no constraints at all, since any nonnegative integers
t1,t, and t3 satisfying the equation above do not exceed 3. So the required
answer is (*}?) = (3), which is the same as E(0) in the above solution.

Example 4.4.2. Figure 4.4.1 shows a 11 by 6 rectangular grid with
4 specified segments AB, CD, EF and GH. Find the number of shortest
routes from O to P in each of the following cases:

(i) All the 4 segments are deleted;
(ii) Each shortest route must pass through exactly 2 of the 4 segments.

P

Figure 4.4.1.

We shall apply (GPIE) to solve this problem. First of all, we have to
identify the universal set S. Since we are now dealing with shortest routes,
it is natural that we take S to be the set of shortest routes from O to
P (without any further condition). Note that from what we learned in
Chapter 1, |S| = (10;" 5) = (155). The next task is to define “appropriate”
properties for elements of S. What properties should we introduce?

Solution. Let S be the set of shortest routes from O to P in the
grid of Figure 4.4.1. We define 4 properties P; (i = 1,2, 3,4) as follows: A
shortest route from O to P is said to possess the property

P, & it passes through AB;
P, & it passes through CD;
P3; & it passes through E'F;
P; & it passes through GH.
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(i) All the 4 segments are deleted.

In this case, a desired shortest route is one that does not pass through
any of the 4 segments; i.e., one that satisfies none of the 4 properties. Thus,
the number of desired shortest routes is given by E(0).

Observe that

w@=1s1=(7)
w(l) = w(P1)+w(P2)+w(P3)+w(P4)

- ()(5)+()(0)+() )+ () )

w(2) = w(P1P2)+w(P1P3)+w(P1P4)+w(P2P3)+w(P2P4) +w(P3P4)

-Q0-0O-00-00-00-

w(3) = w(Pl P, P3)+O)(P1 P, P4) +w (P1 P3P4)+w(P2P3P4)

= (2) ()+() () +ose

and (4)(4) = w(P1P2P3P4) =0.

Thus
E(0) = w(0) — w(1) + w(2) —w(3) +w(4)

-(5)-6)()-()6)-G)6)-G)6)
+(2)()+()6)+ () )+ () @)+ C)C)
-()6)-6)C)

(ii) Each shortest route passes through ezactly 2 of the 4 segments.
The required number of shortest routes is E(2), which is equal to

w@)- 3@+ (5)e®
- () 6)+ () 0+ E)+G) )G E)
-EHEEGE)
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4.5. Surjective Mappings and Stirling Numbers of the
Second Kind

As shown in Section 2.6, the number of surjective (onto) mappings from
N, to Ny, (where n,m € N) is given by m!S(n,m), where S(n,m), the
Stirling number of the 2nd kind, is defined as the number of ways of dis-
tributing n distinct objects into m identical boxes so that no box is empty.
In Section 1.7, we gave the values of S(n,m) in some special cases. Now,
we shall apply Corollary 1 to Theorem 4.3.1 to derive a general formula for
the number of surjective mappings from N, to N,,, which, in turn, gives
rise to a formula for S(n,m).

Theorem 4.5.1. Let F(n,m), n,m € N, denote the number of sur-
jective mappings from N, to N,,. Then

Fen,m) = S (1 (™) (m - k. 45.1
(n.m) = 3 * () - (45.)

Remark. Evidently, F(n,m) can also be regarded as the number of
ways of distributing n distinct objects into m distinct boxes so that no box
is empty.

Proof. Let S be the set of mappings from N, to N,,. We define
m properties P; (i = 1,2,...,m) for members of S as follows: For each
i=1,2,...,m, a mapping f : N, — N,, is said to possess P; if and only if
i ¢ f(N,) (i.e., the element i of N,, is not contained in the image of N,
under f).

It then follows that a mapping f : N, — N,, is surjective if and only
if f possesses none of the properties P; (i = 1,2, ...,m). We therefore have
F(n,m) = E(0).

Observe that

w(0) = |S|=m™;
i m
w(l)=) wPB)= m-—1)";
W=y ue)=(7)em-1

and in general, for each k with 0 < k < m,

w(k) = > w(R,I’.-,~--I’i,,)=(r:)(m-k)"«

1<4; <2< < <m
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Thus, by Corollary 1 to Theorem 4.3.1,

F(n,m) = E(0)

= Y (~Drw(k)

k=0
=0 ()=

as desired. g

Since F(n,m) = m!S(n,m), we thus have:

Corollary 1. Forn,m € N,
Sn,m) = E( D7) m- k.

The following results about the Stirling numbers of the 2nd kind were
stated in Section 1.7: For n,m € N,

(1) S(n,m)=0if n < m;

(2) S(n,n) =1;

(3) S(n,n—1)=(3); and

(4) S(n,n—2)=(3) +3(3).

Combining these with Corollary 1 to Theorem 4.5.1, we obtain some
nontrivial identities involving alternating sums.

Corollary 2. Forn,m €N,

(1) Yio-1)FP)(m =k =0 ifn<m (4.5.2)
2) Tico(-DF()(n— k)" =nk; (4.5.3)
(3) SITH-FCF) - 1- B = (n= D), (45.4)

(@) TEECm—2-k = (-2 {() +3()}.  (455)

Remark. The identities (4.5.2) and (4.5.3) are usually referred to as
Euler’s formula. For their applications and relations to other combinatorial
notions, the reader may read the interesting article [G] by H.-W. Gould.
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4.6. Derangements and A Generalization

In 1708, the Frenchman Pierre Rémond de Montmort (1678-1719) posed
the following problem. Suppose two decks, A, and B, of cards are given.
The cards of A are first laid out in a row, and those of B are then placed
at random, one at the top on each card of A such that 52 pairs of cards
are formed. Find the probability that no 2 cards are the same in each
pair. This problem is known as “le probléme des rencontres” (in French,
‘rencontres’ means ‘match’).

The essential part of the above problem is to find, given the layout
of cards of A, the number of ways of placing the cards of B such that
no ‘match’ can occur. This can naturally be generalized as follows: Find
the number of permutations a;as - --a, of N, such that a; # i for each
t =1,2,...,n. We call such a permutation a derangement (nothing is in
its right place) of N,,, and we denote by D, the number of derangements
of N,. Thus “le probléme des rencontres” is essentially the problem of
enumerating D,, for n = 52. The general problem for arbitrary n was later
solved by N. Bernoulli and P.R. Montmort in 1713.

In 1983, Hanson, Seyffarth and Weston [HSW] introduced the following
notion, which is a generalization of derangements. For 1 < r < n, recall
that an r-permutation of N,, is an arrangement a;a; - - - a, of r elements of
N, in a row. An r-permutation aias---a, of N, is said to have a fized
point at i (i =1,2,..,7) if a; =i. For 0 < k < r, let D(n,r,k) denote the
number of r-permutations of N,, that have exactly k fixed points. Thus,
D, = D(n,n,0). Our aim here is to find a formula for D(n, r, k) by (GPIE).

Example 4.6.1. The 24 (= P§) 3-permutations of Ny are classi-
fied into 4 groups according to the number of fixed points as shown in
Table 4.6.1.

Theorem 4.6.1. [HSW] For integers n,r,k such thatn>r >k >0
and r > 1,

r r—k
D(n,rk) = (n(f)r)! PICE (" B k) (n—k—i). (4.6.1)
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Number of Fixed Points 3-permutations of N4 D(4,3,k
k=0 231, 312, 214, 241, 412, 314,
341, 431, 234, 342, 432 11
1 132, 213, 321, 142, 421,
134, 413, 243, 324
2 124, 143, 423
3 123

Table 4.6.1

Proof. Let S be the set of r-permutations of N,. We define r prop-
erties for elements of S as follows:

An element ajas - - - a, in S is said to possess the property P; if and only
if @; = ¢, where i = 1,2, ...,r.

It thus follows by definition that
D(n,r, k) = E(k).
Observe that for 0 <t < r,

w(Ple...P,) = (:::) '(T-t)!: E::g:

'/_\{t+1,t+2,...,n}

1 2 t o e o ~

n—t integers

X
1

Likewise, w(P;, Pi, -+ P;,) =w(PyPy--- P)= é:—::%, for any t-element sub-
set {i,1s,...,4s} of {1,2,...,7}. Thus,

)= Y wmnpr)= ()82

1< <6< < <1




162 Section 4.6. Derangements and A Generalization

By (GPIE),

r—k g
D(n,r,k) = E(k) = 3 (~1)' (" ;' ’)w(k +i)

=0

-3¢ w(’“") ARR=

i=0

)(n—k—i)!,

t“O

as desired. g

i
e L
('

Some interesting identities involving the D(n,r, k)’s, that can be found

in [HSW], are listed below.
(1) D(n,r,k) = (})D(n — k,r — k,0);

(4.6.2)

(2) D(n,r,k)=D(n—-1,r—1,k—=1)+(n—1)D(n— 1,7 — 1,k)
+(r—1){D(n-2,r-2,k) -~ D(n—-2,r-2,k-1)},

where D(n,r,—1) is defined to be 0;
(3) D(n’ n’k) = nD(n -Ln-1, k) + (_1)"_k(:);
(4) (f)D(n,r, k)= ()D(n—t,r—t,k—t), t >0;
(3) D(n,r,k) =rD(n— 1,7 — 1,k) + D(n — 1,7,k),
where 7 < n;
(6) D, 1~ 7,0) = Ty () Dl — i1 —i,0)
Since D, = D(n,n,0), by Theorem 4.6.1, we have

D, = (0) E( 1)'(i>(n —i)!

=0

=S =y G

(4.6.3)
(4.6.4)
(4.6.5)

(4.6.6)
(4.6.7)
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Corollary. For anyn € N,

(i)D,.=n!(l—-11-!+§1!-—%+»~+(—1)"%; (4.6.8)
(ii) lim Dr =1 ~0.367. g (4.6.9)

We state below two useful identities involving D, that are, respectively,
special cases of identities (4.6.3) and (4.6.4).

(7) D = (n = 1)(Dna-1 + Dn_2); ' (4.6.10)
(8) Dy = nDp_y + (—1)%; (4.6.11)

The reader may refer to the article by Karl [Kr] for different types of gen-

eralization of derangements.

For reference, the first 10 values of D,, are given in Table 4.6.2.

n 1 2 3 4 5 6 7 8 9 10
D, 0 1 2 9 44 265 1854 14833 133496 1334961

Table 4.6.2.

4.7. The Sieve of Eratosthenes and Euler o-function

In this section, we present two classical problems in number theory that
can be solved by (GPIE).

A number n > 2 is said to be composite if n is not a prime. The number
“1” is neither a prime nor a composite number. Just like “bricks” which
can be combined together to build a “wall”, primes can be combined to
form any natural number greater than 1 by multiplication. This can be
seen in the following result which is so important to the study of integers
that it is called the Fundamental Theorem of Arithmetic:
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For every n € N, n > 1, there exist primes
n<p2<--<pk

and positive integers my,my, ..., my such that

- pM1 ,,Mm2 me

n=pMpy?--ppt = [

and such a factorization is unique if we disregard the order of
primes.

The first example that we shall discuss here is concerned with the count-
ing of primes. Given n € N, n > 2, how many primes are there between
2 and n inclusive? We shall solve this problem by applying Corollary 1 to
Theorem 4.3.1. But first of all, we need to introduce a special device for
distinguishing primes from composite numbers. This device, which was dis-
covered by the Greek mathematician Eratosthenes (276-194 B.C.) who lived
in Alexandra around 2000 years ago, is known as the Sieve of Eratosthenes.

The Sieve of Eratosthenes

Write down the numbers 2,3, ..., n in order. Keep the first prime
“2” and cross off all other multiples of 2. Keep the first of the re-
maining integers greater than “2” (i.e., the prime “3”) and cross
off all other multiples of “3” that remain. Keep the first of the
remaining integers greater then “3” (i.e., the prime “5”) and cross
off all other multiples of “5” that remain. This procedure is re-
peated until the first of the currently remaining integers is greater
than \/n. The numbers on the list that are not crossed off are the
primes between 1 and n.
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[2] 8] 4 [5] 4" [7] &~ ~o 20" 11 2" 13
AT 167 17 487 19 200724 227 23 24725
267729287 29 307 31 327733 347 -35- 36" 37
367730 407 41 A7 43 AR 467 4T A8

Example 4.7.1. To find the primes between 2 and 48 inclusive by
the Sieve of Eratosthenes, we first write down the number 2, 3, ..., 48 in
order:

We then keep 2 and cross off all multiples of 2 (i.e., 4, 6, 8, ..., 48). The
first of the remaining integers (i.e., “3”) is kept and all multiples of 3 that
remain (i.e., 9, 15, 21, 27, 33, 39, 45) are crossed off. We then keep “5”,
the first remaining integer and cross off the multiples of 5 that remain (i.e.,
25, 35). The procedure terminates now, since the first remaining integer is
“7”, which is greater than v/48. The numbers that are not crossed off are:

2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
which are the required primes. Note that there are 15 primes altogether. g

Remark. In the above procedure, we actually cross off the multiples
of the primes not exceeding v/n (i.e., 2, 3, 5,) except the primes themselves.
The reason we do not have to proceed beyond /n is this: If a number, say
k, 2 < k < n, is a multiple of a prime p, where p > /n, then k must be a
multiple of a smaller prime p’, where p’ < +/n, and so k has already been
crossed off.

Using the idea behind the above procedure, we now illustrate by an
example how (GPIE) can be used to compute the number of primes from
1 to n, for a given n € N.

Example 4.7.2. Find the number of primes between 1 and 48 inclu-
sive.

Solution. Let S = {1,2,...,48}. There are 3 primes not exceeding
V48, namely, 2, 3 and 5. We define 3 corresponding properties Py, Py, P3
as follows: A number z € S is said to possess property

P & 2z

P & 3|z;
P & 5|z
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It follows from the sieve that the desired number of primes is equal to
EO0) + 3 - 1,

because the 3 primes “2, 3, 5” not counted in E(0) must be included,
whereas, the number “1” counted in E(0) must be excluded.

Observe that

w(0) = |S| = 48;

w(l) = w(Pl) + w(Pg) + w(P3)
][] [ 2] <t 045

w(2) = w(Png) +w(P1P3) + w(P2P3)

48 48 48
= H* |55+ [I5] =o+e+3=15

and w(3) = w(P1P2P3) = I%J =1.
Thus E(0) = w(0) — w(1) + w(2) —w(3) = 48— 49+ 15— 1 = 13 and the
desired number of primes is E(0)+3—-1=15. g

We shall now discuss our second example. For a,b € N, let (a,b) denote
the HCF of @ and b. Thus (8,15) = 1 while (9,15) = 3. We say that a is
coprime to b (and vice versa) if (a,b) = 1. Around 1760, in his attempt to
generalize a result of Fermat’s in number theory, the Swiss mathematician
Leonard Euler (1707-1783) introduced the following notion. For n € N, let
¢(n) denote the number of integers between 1 and n which are coprime to n.
Table 4.7.1 shows those integers z, 1 < z < n, which are coprime to n, and
the values of p(n) for n < 15. The function ¢(n), now known as the Euler ¢-
function, plays a significant role in many enumeration problems in number
theory and modern algebra. As seen in Table 4.7.1, the values of ¢(n) are
rather irregularly distributed except when n is a prime. Mathematicians
had been interested in finding a general formula of ¢(n), and it really took
some time before the following result was established.
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n integers z such that 1 <z < n and (z,n) =1 e(n)
1 1 1
2 1 1
3 1,2 2
4 1,3 2
5 1234 4
6 1,5 2
7 123,45,6 6
8 1,35.,7 4
9 1,245,778 6

10 1,3,7,9 4

11 1,2,3,4,5,6,7,8,9,10 10

12 1,5,7,11 4

13 1,2,3,45,6,7,8,9,10,11,12 12

14 1,35,9,11,13 6

15 1,24,78,11,13,14 8

Table 4.7.1.
Example 4.7.3. Let n € N, and let
n=pMpl...p™
be its prime factorization as stated in the fundamental theorem of arith-
metic. Show that

k
1 1 1 1 )
nN=nl{1-— 1—-——)---{l1——)=n 1-—). 4.7.1
#ln) ( Pl) ( Pz) ( Pk) g( pi ( )
The following two observations are useful in the proof below.

(i) Let z € N such that z < n, where n is given in Example 4.7.3. Then
(z,n) = 1if and only if p; fz for alli=1,2,..,k.
(ii) For real numbers rq, 72, ..., 7%,

k
(L=r)(l=r) - (l=m) ==Y m+ Y mry— > nmyme
i=1 i<j i<j<t
+- 4 (—1)k1‘11‘2 [ERY
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Proof of (4.7.1). Let S = {1,2,...,n}. Corresponding to the k primes
P1,P2, .-, Pk In the factorization of n, we define k properties Py, Ps, ..., P
as follows: An element z € S is said to possess

P; & pi|lz, wherei=1,2,.. k.

It follows from the observation (i) above that z € S is coprime to n if and
only if z possesses none of the properties Py, Ps, ..., P,. Consequently, we
have

¢(n) = E(0).
Observe that w(0) = |S|=n;and for 1 <t <k-—1,

w(t) = Z w(Py,Py,---P,) = Z l_n_pJ

$1<i2<+<dy $1<ia <+ <iy Pi\Piy * " Piy
= Y ——
$1<12< <4y DirPiz *** Piy
d w(k) = l n J = n .
Pip2 - - Pk pip2 - Pk
Hence
¢(n) = E(0)
P D1 T DR SR L
i=1 pi i<j P;P, i<j<l p‘pjpl Pip2 - Dk

1
=n(l1- —_— ) . -1)* )
( z Z DPipj pipip ( ) Dip2 * - Pk

. (1 _ il) (1 _ ;1;) (1 - pik) (by observation (ii))

It is noted that from expression (4.7.1), ¢(n)/n is independent of the
powers m;’s of the primes in the factorization of n. For some interesting
properties and generalizations of ¢(n), and historical remarks on the above
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result, the reader may read [D, p113-158]. To end this section, we state
the following beautiful identity involving Euler ¢-function, due to Smith

(1875):
63 63 7 8
L L [= e e,
(n) 1) (n) 2) T (n” n)
where (a,b) is the HCF of a and b.

4.8. The ‘Probléme des Ménages’

At the end of Section 1.3, we stated the following problem, known as the
probléme des ménages (in French, ‘ménages’ means ‘married couples’):
How many ways are there to seat n married couples, n > 3,
around a table such that men and women alternate and each woman
is not adjacent to her husband?

This famous problem was raised and popularized by E. Lucas in his
book [L] published in 1891. In fact, an equivalent problem was first posed
by P.G. Tait much earlier in 1876 and was settled by A. Cayley and T.
Muir independently in 1877.

In this section, we shall apply Theorem 4.3.1 to solve the above problem
in a more general way. Before doing this, let us first study a problem due
to I. Kaplansky [Kp].

Example 4.8.1. Suppose that the numbers 1,2,...,m (m > 3) are
placed in order around a circle as shown below. For 0 < k < | %], let a(k)
denote the number of k-element subsets of N,, in which no two elements
are adjacent around the table. Show that

a(k) = 1;:- (’" . _'_“1' 1). (4.8.1)

For instance, if m = 10 and k = 4, then {1,3,6,9} and {3,5,8,10}
are such subsets while {1,6,8,10} and {2,6,7,9} are not. Note that if
2| < k < m, no such k-element subsets can exist. When k = 3, Example
4.8.1 is the same as Problem 1.34. If the term “circle” is replaced by “row”
in Example 4.8.1, the problem is identical to that in Example 1.5.3.
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Proof. For each i = 1,2,...,m, let ¢; denote the number of such k-
element subsets of N,, which contam “”. By symmetry, oy = ag = --- =
ay,. We now count aj;.

If B is such a k-element subset of N,, containing “1”, then by the
hypothesis, 2, m ¢ B, and thus the remaining k¥ — 1 elements of B must
be chosen from {3,4,...,m — 1} such that no two are adjacent (in a row).
Hence, by the result of Example 1.5.3,

o = ((m—3);-(_k1—1)+1) _ (m;_kl—l)
)

and so E,_l a;=m
Since Y v 0 =k - a(k) (why?), it follows that

a(k) = kz ,_—<’" ’“l‘l). .

i=1
We are now in a position to establish the following result.

Example 4.8.2. There are n married couples (n > 3) to be seated
in the 2n chairs around a table. Suppose that the n wives have already
been seated such that there is one and only one empty chair between two
adjacent wives as shown below. Let M(n,r), 0 < r < n, denote the number
of ways to seat the n husbands in the remaining chairs such that exactly r
husbands are adjacent to their own wives. Show that

M(nr) =3 (- 1)'°-'< ) 2n k(2" )(n—k)' (48.2)

k=r
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W7D L O

Q W,
We |

) We

Ws S W4<>

Proof. Let S be the set of all arrangements of the n husbands
H,,H,,...,H,. We define 2n properties Py, Ps, ..., Py, as follows: An ar-
rangement in S is said to possess the property:

P, & H, sits to the right of his wife Wy;
Py & H, sits to the left of his wife W
P3 &  Hjsits to the right of his wife Wy;
Py & Hy sits to the left of his wife Wo;

Py,_1 & H, sits to the right of his wife W,,;
P;,, & H, sits to the left of his wife W,.

It is important to note that P; and P;4; cannot hold at the same time, for
each i = 1,2,...,2n, where Py, is defined as P;. Thus

W(P;Piy1) =0 foreachi=1,2,..,2n. (1)

If we arrange the 2n properties in order around a circle as shown below,
then by (1)

w(Pi, Py -+ Py, ) =0,
if the k-element subset {P;,P;,,...,P;,} contains 2 adjacent members
around the circle.

This implies, in particular, that
(i) For n < k < 2n, w(P;, P;, - -+ P;,) = 0 (and so w(k) = 0); (2)
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(ii) For 1 <k <n,

w(k) = > w(Py, Py, -+ Pi,)
1<4; <2< < <2n
2n 2n —k — l)
= = o (n—-k)! 3
G ( k-1 ) L7FL

T
By (4.8.1) number of ways to

seat the remaining
n — k husbands

Finally, we have
M(n,r) = E(r)

2n—-r

=) (-pkT (’:)w(k) (by GPIE)

k—r

= ()2 -k Gy @) and 3)

k=r
- kz:-r( 1)""( ) 2n <2n’;— k) (n— k),
as required. g

The case when r = 0 gives the solution to the ‘probléme des ménages’.
The formula for-this special case, l.e.,

M(n,0)=3 (- I 2n (2"; k)(n—k)! (4.8.3)

k=0
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was discovered by J. Touchard in 1934. The idea used in the above proof
is due to I. Kaplansky [Kp]. For a different proof of formula (4.8.3) (but
still based on (PIE)), the reader may refer to Bogart and Doyle [BD].

For simplicity, let M, = M(n,0). Two interesting identities involving
M,’s are given below:

(n —2)My, = n(n — 2)Mp_1 + nMp_s + 4(-1)" ! (4.8.4)

n
3 (2:) Mn_p=n!, where Mo=1and My =—1. (48.5)
k=0 !

As pointed out in [Kp], the following limit follows from identity (4.8.3):

(4.8.6)

To end this chapter, we give in Table 4.8.1 the values of M,, for 2 < n < 10.

n 2 3 45 6 1 8 9 10
M, 0 1 2 13 80 579 4738 43387 439792

Table 4.8.1

Exercise 4

1. A group of 100 students took examinations in Chinese, English and
Mathematics. Among them, 92 passed Chinese, 75 English and 63
Mathematics; at most 65 passed Chinese and English, at most 54 Chi-
nese and Mathematics, and at most 48 English and Mathematics. Find
the largest possible number of the students that could have passed all
the three subjects.

2. (a) Let A, B and C be finite sets. Show that
() 14N B| = |B| - |4n BY;
(i) JAnBnC|=|C|-]ANnC|-|BNnC|+|AnBNC]|.
(b) Find the number of integers in the set {1,2,...,103} which are not
divisible by 5 nor by 7 but are divisible by 3.
3. Find the number of integers in the set {1,2,...,120} which are divisible
by exactly ‘m’ of the integers: 2, 3, 5, 7, where m = 0,1,2,3,4. Find
also the number of primes which do not exceed 120.
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4. How many positive integers n are there such that n is a divisor of at
least one of the numbers 10%?, 203°? (Putnum 1983)

5. Find the number of positive divisors of at least one of the numbers:
1069, 2059, 300,

6. Find the number of integers in each of the following sets which are not
of the form n2 or n3, where n € N:
@) {1,2,...,10%},
(i) {10,103 +1,...,10%}.
7. Prove Theorem 4.2.1 by
(a) induction on g;
(b) Corollary 2 to Theorem 4.3.1.

8. A year is a leap year if it is either (i) a multiple of 4 but not a multiple
of 100, or (ii) a multiple of 400. For example, 1600 and 1924 were leap
years while 2200 will not be. Find the number of leap years between
1000 and 3000 inclusive.

9. Each of n boys attends a school gathering with both of his parents. In
how many ways can the 3n people be divided into groups of three such
that each group contains a boy, a male parent and a female parent, and
no boy is with both of his parents in his group?

10. A man has 6 friends. At dinner in a certain restaurant, he has met
each of them 12 times, every two of them 6 times, every three of them
4 times, every four of them 3 times, every five twice and all six only
once. He has dined out 8 times without meeting any of them. How
many times has he dined out altogether?

11. Three identical black balls, four identical red balls and five identical
white balls are to be arranged in a row. Find the number of ways that
this can be done if all the balls with the same colour do not form a
single block.

12. How many arrangements of a, a,a,b, b,d, c, ¢, c are there such that
(i) no three consecutive letters are the same?

(ii) no two consecutive letters are the same?
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13. Find the number of shortest routes from corner X to corner Y in the fol-
lowing rectangular grid if the segments AB, BC and BD are all deleted.

Y

X

14. Find the number of integer solutions to the equation
Ty + 22+ 23 =28
where 3 <z, <9,0<z,<8and 7< z3 <17.
15. Find the number of integer solutions to the equation
z1+ 22+ 23 =40
where 6 < z; < 15,5 < 25 <20 and 10 < z3 < 25.
16. Find the number of integer solutions to the equation
z1+z2+z3+24=20

where 1 <21 <5,0<2,<7,4<z3<8and2<z4<6.

17. Let k,n,r € N. Show that the number of integer solutions to the
equation
zy+zT2+--+2p=r

such that 0 < z; < k for each i = 1,2,...,n is given by
z":(_l),. n\(r—(k+1)i+n—1
i=0 i n-1 .

18. Let k,n,» € N. Show that the number of integer solutions to the
equation
Tyttt =r
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such that 1 < z; <k foreachi=1,2,...,n is given by

S () ()

19. Find the number of ways of arranging n couples { H;, W;},i = 1,2,...,n,
in a row such that H; is not adjacent to W; for each i = 1,2,...,n.

20. Let p,q € N with p odd. There are pg beads of ¢ different colours:
1,2,...,q with exactly p beads in each colour. Assuming that beads of
the same colour are identical, in how many ways can these beads be put
in a string in such a way that
(i) beads of the same colour must be in a single block?

(ii) beads of the same colour must be in two separated blocks?

(iii) beads of the same colour must be in at most two blocks?

(iv) beads of the same colour must be in at most two blocks and the size
of each block must be at least 27

21. (a) Find the number of ways of distributing r identical objects into n
distinct boxes such that no box is empty, where r > n.

(b) Show that

S ) ()

where r,n € N with » > n.

22. (a) Let B be a subset of A with |A| = n and |B| = m. Find the number
of r-element subsets of A which contain B as a subset, where m < r < n.

(b) Show that for m,r,n € N with m <r <n,

(27 -2 ()

23. (a) For n € N, find the number of binary sequences of length n which
do not contain ‘01’ as a block.

(b) Show that

n+1—l§( 1)'( ')2"-2'

i=0



24.

25.

26.

217.

28.

29.

30.

Chapter 4. The Principle of Inclusion and Ezclusion 177

In each of the following configurations, each vertex is to be coloured by
one of the A different colours. It how many ways can this be done if
any two vertices which are joined by a line segment must be coloured
by different colours?

n persons are to be allocated to ¢ distinct rooms. Find the number of
ways that this can be done if only m of the ¢ rooms have exactly &
persons each, where 1 < m < ¢ and mk < n.

Suppose that A = {k-z,,k-z2,...,k-z,} is a multiset, where k,n € N.
For m € N* with m < n, let a(m) denote the number of ways to arrange
the members of A in a row such that the number of blocks containing
all the k elements of the same type in the arrangement is exactly m.
Show that

a(m) = GO () S0 (32 )@t ik -

i=m

Prove identities (4.6.2)-(4.6.7).
([HSWY]; for (4.6.7), see E. T. H. Wang, E2947, Amer. Math. Monthly,
89 (1982), 334.) '

For n € N, let C, denote the number of permutations of the set
{1,2,...,n} in which k is never followed immediately by k + 1 for each
k=12,...,n—1.

(i) Find Cy;

(ii) Show that C, = Dy + Dy_; for each n € N.

Let m,n € N with m < n. Find, in terms of Dg’s, the number of
derangements a;a; .. .a, of N, such that

{a1,as,...,am} = {1,2,...,m}.

Let m,n € N with n > 2m. Find the number of derangements
aias ...a, of N, such that

{a1,as,...,am}={m+1,m+2,...,2m}
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in each of the following cases:
(i) n=2m;
(ii) n=2m+1;
(i) n=2m+r,r>2.
31. Apply identity (4.6.8) to prove identities (4.6.10) and (4.6.11).
32. Given n € N, show that D,, is even iff n is odd.
33. Let Dy,(k) = D(n,n, k). Show that
(i) Dn(k) = :)Dn—lﬁ
(i) (})D1+ (3)D2+ -+ (3)Dn =nY
(iii) (k+ 1)Dpy1(k+1) = (n+ 1)D,(k).

34. Let D, (k) be the number of permutations of the set {1,2,...,n},n > 1,
which have exactly k fixed points (i.e., Dn(k) = D(n,n, k)). Prove that

f:k-p,,(k)n!.

k=0
(IMO, 1987/1)
35. Let Dy (k) denote D(n,n,k). Show that

Dn(0) = Da(1) = (-1)"

for each n € N.
36. Let Dy(k) denote D(n,n,k). Prove that

55@—1Va¢@=nL

k=0
(West Germany MO, 1987)
37. Let Dy(k) denote D(n,n,k). Prove that

ﬁi“k—hn(k—r+DDAb=nL

k=r

where r,n € N* with r < n. (D. Hanson, Cruz Mathematicorum, 15(5)
(1989), 139.)



38.

39.

40.

41.

42.
43.

44.

45.
46.

47.
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(a) Without using equality (4.7.1), show that

(i) the Euler p-function is a multiplicative function; that is, p(mn) =
@(m)p(n) whenever m,n € N with (m,n) = 1.

(ii) for a prime p and an integer i > 1,

e(p') =p' = p'".

(b) Derive equality (4.7.1) from (i) and (ii).
(i) Compute ¢(100) and (300).

(ii) Show that ¢(m)|p(n) whenever m|n.
Show that for n € N,

Y 6(d) | d €N, djn) = n.
Let m,n € N with (m,n) = h. Show by using equality (4.7.1) that
p(mn) - p(h) = p(m) - ¢(n) - h.

Show that for n € N with n > 3, ¢(n) is always even.

Let n € N with n > 2. Show that if n has exactly k distinct prime
factors, then
p(n) >n-27F

Let n € N with n > 2. Show that if n has exactly k distinct odd prime
factors, then

2%|p(n).
Does there exist an n € N such that ¢(n) = 147 Justify your answer.

For n € N, show that

p(n) if nisodd
2¢p(n) if n is even.

p(2n) = {

For m,r,q € N with m <r < g, let

Amry = 30 (£ )t

k=m
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Thus Theorem 4.3.1 says that E(m) = A(m,q). Prove that
(i) if m and r have the same parity (i.e., m =r (mod 2)), then

E(m) < A(m,r);
(ii) if m and r have different parities, then
E(m) > A(m,r);
(iii) strict inequality in (i) (resp., (ii)) holds iff w(t) > 0 for some ¢ with
r<t<gq.
(See K. M. Koh, Inequalities associated with the principle of inclusion

and exclusion, Mathematical Medley, Singapore Math. Soc. 19 (1991),
43-52.)

48. Prove the following Bonferroni inequality:

g
D (1) w(k) 20
k=j
for each j =0,1,...,q.
49. (i) Let Ay, A,,..., A, be n finite sets. Show that

n
(4
k=1

(ii) Apply (i) to prove the following (see Example 1.5.4): A permutation
of n couples {H;,W;,Hy,Wa,...,Hp,W,} (n > 1) in a row is said to
have property P if at least one couple H; and W;(i = 1,2,...,n) are
adjacent in the row. Show that for each n there are more permutations
with property P than without.

50. Let By =1 and for r € N, let B, = Y ;_, S(r,k). The number B, is
called the rth Bell number (see Section 1.7). Show that

(i) Corollary 1 to Theorem 4.5.1 can be written as

st = 5 30 (B)

j=0

n

> ZlAkl - Z |A; nAjI.

k=1 1<i<j<n

where 7,k € N;

(i) By =e 1352, &



51.

52.

53.

54.

55.
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For n € N* and » € N, let

=20 (7).

1=0

Show that
n

= n+r

1

ap = -

N GY)
We follow the terminology given in Theorem 4.3.1. For 1 < m < g, let
L(m) denote the number of elements of S that possess at least m of the
¢ properties. Show that

s = 3 (574 e

k=m -

a, An_1.

Deduce that

Note. One possible proof is to follow the argument given in the proof of
Theorem 4.3.1 and to apply the identity given in the preceding problem.

For k = 1,2,...,1992, let A; be a set such that |Ax| = 44. Assume

that |4; N A;| = 1 for all 4,5 € {1,2,...,1992} with ¢ # j. Evaluate
1992
U Akl
k=1

Twenty-eight random draws are made from the set

{1,2,3,4,5,6,7,8,9,A,B,C,D,J,K,L,U,X,Y,Z}
containing 20 elements. What is the probability that the sequence
CUBAJULY 1987

occurs in that order in the chosen sequence? (Belgium, 1987)

A sequence of 35 random draws, one at a time with replacement, is
made from the set of the English alphabet:

{A,B,C,...,X,Y,Z}.
What is the probability that the string
MERRYCHRISTMAS

occurs as a block in the sequence?
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56.

57.

58.

59.

In a group of 1990 people, each person has at least 1327 friends. Show
that there are 4 people in the group such that every two of them are
friends (assuming that friendship is a mutual relationship). (Proposed
by France at the 31st IMO.)

Let C be the set of complex numbers, and let S = {z € C | |z] = 1}. For

each mapping f : S — S and k € N, define the mapping f* : S — S by

FE(z) = F(f(---(f(2))--*)). An element w € S is called an n-periodic
———

k
point (n € N) of f if
filw)#w for all i=1,2,...,n—1, but f"(w)=w
Suppose f: S — S is a mapping defined by
f(z)=2z" (mé€N).
Find the number of 1989-periodic points of f. (Chinese Math. Compe-
tition, 1989)
For m,n € N, let M be the set of all m x n (0,1)-matrices. Let

M, = {M € M| M has at least one zero row}
and

M, = {M € M| M has at least one zero column}.

Show that the number of matrices in (M\M,) N M. is given by

Z( 1)i-? ( ) =i )™,

i=1
(C. J. Everett and P. R. Stein, Discrete Math. 6 (1973), 29.)

For n,m € N with m < n, let P,(m) denote the number of permutations
of {1,2,...,n} for which m is the first number whose position is left
unchanged. Thus P,(1) = (n —1)! and P,(2) = (n — 1)! - (n — 2)L.
Show that

(i) Pa(m) =TI (<D (") (n = 1= )5

(ii) Pa(m+1) = Py(m) — P,_1(m) foreachm =1,2,...,n- 1.

(see Problem 979, Maths. Magazine, 50 (1977), 269-270)
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62.

63.
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Let P be a nonempty, finite set with p members, and @ be a finite
set with ¢ members. Let Ni(p,¢) be the number of binary relations of
cardinality k with domain P and range Q. (Equivalently, Ni(p,q) is the
number of p X ¢ matrices of 0’s and 1’s with exactly k entries equal to 1
and no row or column identically 0.) Compute %% ,(—1)*¥~1Nx(p, q).
(Proposed by S. Leader, see Amer. Math. Monthly, 80 (1973), 84)

Let D, and M,, denote the derangement number and the ménage num-
ber respectively. Prove or disprove that the sequence {M,/D,},n =
4,5,6,... is monotonically increasing and lim,_,o(M,/D,) = 1/e.
(Proposed by E. T. H. Wang, see Amer. Math. Monthly, 87 (1980),
829-830.)

Show that for n € N and r € N*,

n n min{r,n}
Zk' (k)Dn_k =n! Z S(r,m).
k=0 m=0

Deduce that for n > r,

n
Sk (:) Dok = By -nl,
k=0

where B, is the rth Bell number. (See Amer. Math. Monthly, 94
(1987), 187-189)

Let S = {1,2,3,...,280}. Find the smallest integer n such that each
n-element subset of S contains at least 5 numbers which are pairwise
relatively prime. (IMO, 1991/3)

References.

[B] K. Bogart and P.G. Doyle, Non-sexist solution of the ménage
problem, Amer. Math. Monthly, 93 (1986), 514-518.

[D] L.E. Dickson, History of the Theory of Numbers, Vol. I,
Carnegie Institution of Washington, 1919. Reprinted by Chelsea,
New York, 1952.



184 References
[G] H.W. Gould, Euler’s formula for nth differences of powers, Amer.
Math. Monthly, 85 (1978), 450-467.

[HSW] D. Hanson, K. Seyffarth and J.H. Weston, Matchings, Derange-
ments, Rencontres, Math. Magazine, 56(4) (1983), 224-229.

[Kp] I. Kaplansky, Solution of the “probléme des ménages”, Bull.
Amer. Math. Soc., 49 (1943), 784-785.

[Kr] D. Karl, Rencontres reencountered, The College Maths. J.,
19(2) (1988), 139-148.

[L] E. Lucas, Théorié de nombres, Paris 1891. Reprinted by ~ Blan-
chard, 1961.

[T] L. Takécs, On the method of inclusion and exclusion, J. Amer.
Statist. Ass., 62 (1967), 102-113.



Chapter 5

Generating Functions

5.1. Ordinary Generating Functions

As seen in the previous chapters, one of the main tasks in combinatorics
is to develop tools for counting. Perhaps, one of the most powerful tools
frequently used in counting is the notion of generating functions. This
notion has its roots in the work of de Moivre around 1720 and was developed
by Euler in 1748 in connection with his study on the partitions of integers.
It was later on extensively and systematically treated by Laplace in the
late 18th century. In fact, the name “generating functions” owes its origin
to Lapalce in his great work “Théorie Analytique des Probabilities” (Paris,
1812).

Let (ar) = (ao,a1,...,ar,...) be a sequence of numbers. The (ordinary)
generating function for the sequence (a,) is defined to be the power series

[><]
A(z) =) aa" =ao+ a1z +az’ +---.

r=0

Two generating functions A(z) and B(z) for the sequences (a,) and (b,),
respectively are considered equal (written A(z) = B(z)) if and only if
a; = b; for each 1 € N*.

In considering the summation in a generating function, we may assume
that = has been chosen such that the series converges. In fact, we do not
have to concern ourselves so much with questions of convergence of the
series, since we are only interested in the coefficients. Ivan Niven [N] gave
an excellent account of the theory of formal power series, that allows us to
ignore questions of convergence, so that we can add and multiply formal
power series term by term like polynomials, as given below:

185
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Let A(z) and B(z) be, respectively, the generating functions for the
sequences (a,) and (b,). That is,
A(z) = a0+ a1z +azz® + - - -,
B(z): b0+b1£+b2z2+"’ .

The sum A(z) + B(z) and the product A(z)B(z) of A(z) and B(z) are
defined by:

A("’)'*'B("’)=Co+01-’b‘+czz2+.-.,
and A(z)B(z) = do + d1z + daz® + - -,

where

¢r=a,+b,, forr=0,1,2,..., and

d, = agb, + ajbe—1 +agbr_2+---+ar_1b1 +ayby, forr=0,12,....
Writing explicitly, we have:

A(z) + B(z) = (a0 + bo) + (a1 + b1)z + (az + by)z® + - -,

and

A(z)B(z) = (aobo) + (aobl + albo)z + (a0b2 + a1b1 <+ azbo)zz +--
Also, for each constant «, we put

aA(z) = (aa) + (ca1)z + (caz)z? + - -.

Remark. The sequence (¢,) above is defined “componentwise”,
whereas, the sequence (d,) is called the Cauchy product or the convolu-
tion of the sequences (a,) and (b,). When the sequences are finite, both
operations are exactly the same as those for polynomials. In this chapter,
we shall see how combinatorial considerations can be converted into alge-
braic manipulations using generating functions. This, in fact, is the main
advantage of the theory of generating functions.

Now, for each « € R and each r € N, we introduce the “generalized
binomial coefficient” () by putting:

a\ _P?
r) "
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where P? = a(a—1)(a—2)---(a —r+1). We further set () = 1 for each
a €R.

We now state the following generalized binomial expansion due to New-
ton: For every a € R,

Q+z)*= i (‘:) (£z)"

r=0
=lxaz+ a(a2'— l)zzzl: a(of- ;)'(a—2)23+m
+(-1yr&e= 1)“;'(""”' Dor g (5.1.1)

The proof of this expansion can be found in many books on advanced
calculus. Note that the series in (5.1.1) is infinite if a is not a positive
integer. The generalized notion (%) has some properties similar to those of
the usual binomial coefficients. For instance, we have:

20+ ()=

for each « € R and r € N.
By (5.1.1), we have

%:(l—z)_lz 1+:c+3;2+23+...’
and (—1_}7)2=(1—z)"2=1+2z+332+4z3+~--.
In general,
R e e

=1+ (1+’1'-1)z+ (2+'2"1)a:2+~ o (r+':—1)z'+~ .

for each n € N.
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Example 5.1.1. (a) For each n € N*, let (a,) be the sequence where

1 ifr=mn,
a, =

0 otherwise.

That is,
a.)=(0,0,...,0,1,0,0,...).
(ar) = ( 0,0 1 )
01 n
Then the generating function for (a,) is z".

(b) The generating function for the sequence ((5), (%), .- (?),0,0,...) is

n

3 (:) o = (1+z)". (5.1.2)

r=0
(c) The generating function for the sequence (1,1,1,...) is

1

l+z+2%24+...= .
l1-z

(5.1.3)

More generally, the generating function for the sequence (1,k,k2,...),
where k is an arbitrary constant, is

1

2,2 4 13,31 ... — ) 1
1+kz+k°z° + k°z° + - (5.1.4)
(d) The generating function for the sequence (1,2,3,...) is
1
2 e I e——— i
142z +3z° + a=ae (5.1.5)

(e) The generating function for the sequence
n-—1 l1+n-1 r+n-—1
L ] ey , .

f: (" + . l)z" = (1_—15:)—» . (5.1.6)

r=0

1s

Formulae (5.1.2) — (5.1.6) are very useful in finding the coefficients of
generating functions, as illustrated in the following example.
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Example 5.1.2. Find the coefficient of z*, k > 18, in the expansion
of

(B +zt+25+..05

Solution. Observe that
(e + 2t +25+..)
={z*Q+z+2®+--)}°
=281 +z+22+-.)"

= 718 (ﬁ)s (by (5.1.3))
=2y (" + ‘: - 1) 2" (by (5.16))

r=0
= zlsf: (r ; 5) z".
r=0

Thus the coefficient of z*, k > 18, in the expansion of (:c3 +zt4+z%+4 .. ~)6
is the coefficient of z¥~18 in 3~ ("t%)2", which is (*~1*+5) = (F319).

In particular, the coefficient of 3% in (23 + z* + 2% +--)%is (V). u

To facilitate algebraic manipulations of generating functions, we have
the following results.

Theorem 5.1.1. (Operations on Generating Functions) Let

A(z) and B(z) be, respectively, the generating functions for the sequences
(ar) and (b,). Then

(i) for any numbers a and B, aA(z)+ B(z) is the generating function
for the sequence (c,), where

¢r = aay + Bb., for allr;
(ii) A(z)B(z) is the generating function for the sequence (c,), where
¢r = aghy + arbo—1 + agb,_lg + -+ ap—1by + azby, forallr;
(ii1) A2(z) is the generating function for the sequence (c,), where

¢r = aoGr + a1a,_1 + @202+ -+ -+ ay_1a1 + arao, forallr;
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(iv)

(vi)

(vii)

(viii)

(ix)

Section 5.1. Ordinary Generating Functions
z™A(z), m € N, is the generating function for the sequence (c,),
where

0 if 0<r<m-—1
c,={

ar-m f r2m;

A(kz), where k is a constant, is the generating function for the se-
quence (c,), where

¢ =k"a,, forallr;
(1 — z)A(z) is the generating function for the sequence (c,), where

co=ay and ¢ =a,—ar-1, forallr>1;

ie., (¢r) = (a0, a1 — ag,az — ay,...);

A_:cz is the generating function for the sequence (c,), where
cr=ao+ay+---+a,, foralr;

i.e., (¢r) = (a0,a0 + a1,a0 + a1 + az,...);

A'(z) is the generating function for the sequence (c,), where
¢r = (r+1)ary1, forallr;
ie., (¢r) = (a1,2a3,3as, .. .);
zA'(z) is the generating function for the sequence (c,), where
¢ =ray, forallr;

ie., (¢r) = (0, a1, 2ay, 3a3, . . .);

(x) f: A(t)dt is the generating function for the sequence (c,), where

: ar_
co=0 and ¢, = 'rl, forallr>1;

. a a
Le., (er) = (0, ao, -2—1,-52—,)
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Proof. (i), (ii) and (v) follows directly from the definition, whereas
(iii), (iv) and (vi) are special cases of (ii). Also, (viii), (ix) and (x) are
straightfoward. We shall prove (vii) only.

vii) By (5.13), 2= =1+2z+2%+-... Thus
l-z

A()
1-

Y14zt
—ao+(ao+01)z+(ao+41+02)32+'-- .

Hence ‘:4_%} is the generating function for the sequence (c,), where ¢, =
a+a+--+ar. n

We see from Theorem 5.1.1 that operations on the terms of sequences
correspond to simpler operations on their generating functions. Thus the
generating function becomes a useful tool in the algebraic manipulations of
sequences.

Example 5.1.3. Express the generating function for each of the fol-
lowing sequences (c,) in closed form (i.e., a form not involving any series):

(i) ¢, = 3r + 5 for each r € N*;

(ii) ¢, = r? for each r € N*.

Solution. (i) Let a, = r and b, = 1 for all r. The generating function
for the sequence (a,) is n—”zF, by (5.1.5) and Theorem 5.1.1(iv); while the
generating function for (b,) is 1=, by (5.1.3). Thus, by Theorend 5.1.1(i),
the generating function for the sequence (¢, ), where ¢, = 3r+5 = 3a,. +5b,,

is given by (i%j’ + %

(ii)) Let a, = r for all r. As in (i), the generating function for the
sequence (a,) is A(z) = =2y Since ¢, = r? = ra,, by Theorem 5.1.1(ix),
the generating function for the sequence (c,) is

(-z)+z-21-2) z(l+2)

zA'(z) ==z -2 =27
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5.2. Some Modelling Problems

In this section, we shall discuss how the notion of generating functions, as
introduced in the preceding section, can be used to solve some combinatorial
problems. Through the examples provided, the reader will be able to see
the applicability of the technique studied here.

To begin with, let S = {a,b,c}. Consider the various ways of selecting
objects from S.

To select one object from S, we have:
{a} or {b} or {c} (denoted by a + b+ ¢).

To select two objects from S, we have:

{a, b} or {b,c} or {c,a} (denoted by ab + bc + ca).
To select three objects from S, we have:

{a,b,c} (denoted by abe).
These symbols can be found in the following expression:
(14 az)(1 + bz)(1 + cz)
=124 (a + b+ ¢)z* + (ab + be + ca)z? + (abe)z®. (*)

We may write 1+ az = z° + az!, which may be interpreted as “a is not
selected or a is selected once” (see the figure below).

l4+az = z° + az!
1 ) )
“a@” is not “a” is selected

selected once

Similarly, 1 4+ bz and 1 + cz may be interpreted likewise. Now, expanding
the product on the LHS of the equality (%), we obtain the expression on
the RHS, from which we see that the exponent of z in a term indicates the
number of objects in a selection and the corresponding coefficient shows all
the possible ways of selections.

Since we are only interested in the number of ways of selection, we may
simply let a = b = ¢ = 1 and obtain the following;:

1+ z)(1+2)(1+z) = 1 4 3z + 327 + 12°,

which is the generating function for the sequence (1,3,3,1,0,0,...) (or
simply (1, 3, 3, 1) after truncating the 0’s at the end of the sequence). Hence
the generating function for the number of ways to select r objects from 3
distinct objects is (1 + z)3.
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Example 5.2.1. Let S = {s1,52,...,5,}, and let a, denote the num-
ber of ways of selecting r elements from S. Then the generating function
for the sequence (a,) is given by

(L+2)(+a) (142 = A+ =3 (7))
(s1) (s2) (sa) rz=:o r

Thus Y72 arz” = Y o (?)2", which implies that
() ifosrsn
a =
0 ifr>n+l g

Now, let S be the multi-set {2 -a,1-b}. Consider the various ways of
selecting objects from S.

To select one object from S, we have:
{a} or {b} (denoted by a + b).

To select two objects from S, we have:

{a,a} or {a,b} (denoted by a? + ab).
To select three objects from S, we have:

{a,a,b} (denoted by a?b).
These symbols can be found in the following expression:
(1 + az + a®2?)(1 + bz) = 12° + (a + b)z’ + (a® + ab)z® + (a?b)z>.

As before, the exponent of z in the equality indicates the number of objects
in a selection and the corresponding coefficients show all the possible ways
of selections.

Again, since we are only interested in the number of ways of selection,
we may simply let ¢ = b = 1 and obtain the following

Q+z+2)(1+2) =142z + 222 + 123,

which is the generating function for the sequence (1,2,2,1,0,0,...) (or
simpy (1,2,2,1)). Hence the generating function for the number of ways to
select r objects from the multi-set {2-a,1-b} is (1 +z + z2)(1 + z).
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Example 5.2.2. Find the number of ways to select 4 members from
the multi-set M = {2-b,1-¢,2-d,1-¢}.

Solution. Let a, be the number of ways of selecting » members from
M. Then the generating function for the sequence (a,) is given by

A+z+z)(1+2)Q+z+2)(1+2)
®) ) (d) ()

= (14 2z + 222 + 23)(1 + 2z + 22% + 23).

The required answer is a4, which is the coefficient of z*. Thus ag = 2+4+
2=8. n

More generally, we have:

Let a, be the number of ways of selecting » members from the
multi-set M = {n;-by,ny-dy,...,n;-b;}. Then the generating function
for the sequence (a,) is given by

(1+z+...+z”1)(1+3+...+$”3)...(1+z+...+znk).
b

1 2 k

That is, a, is the coefficient of z" in the expansion of the above prod-
uct.

Example 5.2.3. Let a, be the number of ways of selecting » members
from the multi-set M = {00 - b;,00 - by, --,00 - bx}. Then the generating
function for the sequence (a,) is given by ' :

(1+z+zz+.‘.)(1+z+32+...)...(1+$+z2+...)
. (b1) (b2) (bx)

() ()

r=0

Thus a, = ("++-1). g
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Remark. The answer e, in Example §.2.3 can also be obtained by
enumerating the coefficient of " in the expansion of the following generat-
ing function:

Q+z+22+-- 42"

Though now the number of terms in each factor is finite, it actually does
not simplify the computation, as

l—z""l)k

Y Tk=
Al+z+--4+2") (1,_3

which leads to a more complicated expansion than the one given in the
example above.

Example 5.2.4. Let a, be the number of ways of distributing r
identical objects into n distinct boxes. Then the generating function for
(a,) is:

AQ+z+22+--)Q+z+22+--)---Q+z+22+--)
(box 1) (box 2) (box n)

N e

r=0

Thus a, = ("“;_1). 5

Example 5.2.5. Let a, be the number of ways of distributing r
identical objects into n distinct boxes such that no box is empty. Since a
box must hold at least one object, the corresponding generating function
for each box is (z + 2% + z3 + - - -). Hence, the generating function for (a,)

is
(z+22+-- ) =z"(l4+z+22+..)"

1 " i+n-1\ ;
— n — n £3
=% (1—:!:) =2 E( 1 ):c.

=0

Thus

0 if r <n,
ar =
(rrh=(72)) ifr>n. g

n-1
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Example 5.2.6. Each of the 3 boys tosses a die once. Find the
number of ways for them to get a total of 14.

Solution. Let a, be the number of ways to get a total of r. Since the
outcomes of tossing a die are 1,2,3,4,5 and 6, the generating function for

(ar) is
(z+ 22+ -+ 25)3

— z6\3

= [i+2\ ;
=za(1—326+3z12—£18)2( 9 )z‘.

=0

The required answer is a;4, which is the coefficient of z14. Thus
- 1142 _3 5+2) (13 _3 7
M 2 2 )~ \2 2 ®

5.3. Partitions of Integers

A partition of a positive integer n is a collection of positive integers whose
sum is n (or a way of expressing n as a sum of positive integers, ordering
not taken into account). Since the ordering is immaterial, we may regard
a partition of n as a finite nonincreasing sequence n; > ng > --- > ng of
positive integers such that 2?:1 n; = n. The number of different partitions
of n is denoted by p(n).

Example 5.3.1. The following table shows the partitions of 1, 2, 3,
4 and 5.

n partitions of n p(n)

1 1 1

2 2=1+1 2

3 3=24+1=1+4+1+1 3

4 4=34+1=242=2414+1=14+14+1+41 5

5 | 5=44+1=342=3+14+1=242+1
=2+14+141=1414+141+41 7 :
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Notes. (1) If n = ny + ny + ---ny is a partition of n, we say that
n is partitioned into k parts of sizes n;,n,,...,n; respectively. Thus, in
the partition 9 = 3+ 3 + 2 + 1, there are 4 parts of sizes 3, 3, 2 and 1
respectively.

(2) A partition of n is equivalent to a way of distributing n identical
objects into n identical boxes (with empty boxes allowed), as illustrated
below:

4 =4 =3+1 =242 =24141 =1414141
g g ° ooo g g g o o °
0 [ 0

Example 5.3.2. Let a, be the number of partitions of an integer r
into parts of sizes 1, 2 or 3. The generating function for (a,) is

(I+z+2’+--)Q+22+2* +- - )1+2>+2%+- )
(size 1) (size 2) (size 3)
1
TO-a(i-)(1-2%

Note that the three factors in the above generating function are of the form
()" + (@) + )+,
where k£ = 1,2,3 and a term (z*)’ indicates that, in the partition, there

are j parts of size k.

Now, consider the term containing z3 and its coefficient. We see that
the coefficient of z3 is 3 since there are 3 ways of getting z3 (namely,

23 = (21)2(22)°(23)! = (z})}(2?)}(23)° = (2!)3(2?)°(23)?) in the above

generating function, as illustrated in the following table.

Size 1 Size 2 Size 3

z0 z0 z8 3=3
323 zl z2 z0 3=142
z3 z0 z0 3=14+1+1
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Similarly, consider the term containing z* and its coefficient. We see that
the coefficient of z* is 4 since there are 4 ways of getting z* in the above
generating function, as illustrated in the following table.

Size 1 Size 2 Size 3

z0 zt z° 4=2+2
4zt z! z0 3 4=1+3
z2 z? z° 4=1+4+1+42
zt z0 z° 4=141+1+1. g

Example 5.3.3. Let a, be the number of partitions of r into distinct
parts of sizes 1, 2, 3 or 4. The generating function for (a,) is

(A +2)(1+2%)(1 +2°)(1 +2%).

We note that, in this partition, no repetition is allowed. So a part of size
k is used at most once and thus the corresponding generating function is
(2*)° + (2F)! = 1 + z*. There are two ways to form z°, namely:

26=1.22-1-2* o 6=2+4
28=z.22.221 & 6=14+2+3.

Thus as =2. g

Example 5.3.4. Let a, denote the number of partitions of r into
distinct parts (of arbitrary sizes). For instance,
6=5+1=4+2=3+2+1;
7T=64+1=542=4+4+3=4+2+1;
8=74+1=64+2=54+3=5+24+1=4+3+1.
Thus, ag = 4, a; = 5 and ag = 6.

It is easy to see that the generating function for (a,) is
Q+z)Q+22)(1+2%)-- 1‘[(1 + ).
(¢))] (2 ®) i=1

We note that, since the size of each part is arbitrary, the number of terms
on the LHS is infinite.
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For example, in the above product, there are 4 ways to form z6, namely:

z6 = 6 - 6=6

z6 = z1z5 - 6=5+1.

z6 = 2224 - 6=442.

2 =212223 o 6=3+2+41.

Thus a¢ = 4. g

Example 5.3.5. A part in a partition is said to be odd if its size
is odd. Let b, denote the number of partitions of r into odd parts. For
instance,

6=5+1=34+3=3+14+14+1=1414+14+141+1;
T=7=54+141=34+3+1=3+14+141+1
=1414+1414+1+1+1;
8=7T+1=5+4+3=54+1+14+1=3+3+1+1
=3+4+14+1414141=14+141414+1414+141.
Thus, bs = 4, by = 5 and bg = 6.

The generating function for (b, ) is

Q+z+2>+-)Q+23+28+. - )Q+ 2 +204+..) -
D) (3

)
1

= Q1-z)(1-23)(1—-25).-- -

For example, in the above product, there are 4 ways to form z¢, namely:

(=5, @es, 2, (@)
! l 'l !
14141414141 1414143 145 343
Thus bs = 4. g )
From the two examples above, we notice that ag = 4 = bg, a7 =5=0b;
and ag = 6 = bs. This is by no means a coincidence. In fact, these
equalities are just special cases of the following result due to Euler, who

laid the foundation of the theory of partitions, around 1748, by proving
many beautiful theorems about partitions.
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Theorem 5.3.1. (Euler) The number of partitions of r into distinct
parts is equal to the number of partitions of r into odd parts.

Proof. Let a, (resp., b,) denote the number of partitions of r into
distinct (resp., odd) parts. Then the generating function for (a,) is

Q+2)(1+22)A+2%)(1 +2%) -
_1-z?1-2*1-251-2°
T 1—-z 1—-221-23 1 -2
1
=A==

which is exactly equal to the generating function for (b.). Hence a, = b,
foreachr=1,2,.... g

The technique used in the proof of Theorem 5.3.1 can be utilized to

prove many other results of the “Euler type”. For instance, we have:

Theorem 5.3.2. For each n € N, the number of partitions of n
tnto parts each of which appears at most twice, is equal to the number of

partitions of n into parts the sizes of which are not divisible by 3.

Before proving the result, let us examine it by taking n = 6. We see
that there are 7 ways of partitioning 6 into parts, each of which appears at _
-

most twice, as shown below:

6=54+1=44+2=4+141=3+3
=34+24+1=24+2+1+1.

There are also 7 ways of partitioning 6 into parts, the sizes of which are
not divisible by 3, namely:

54+41=44+2=44+141=24+24+2=24+24+1+1
=2414+14+141=14+1414+14+1+4+1.
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Proof of Theorem 5.3.2. The generating function for the number
of partitions of n into parts, each of which appears at most twice, is

(1+z+2)(1+2°+ 21+ 22+ 25)(1+2* +25) -
However, we have

Q+z+22)Q+22+ 21+ 22 +25)Q +2* +25) ...
_(1-=z)(1+z+2?) (-1 +e? +z%) (1—-2%)(1+ 2% + 29)
=) -2 )
(1-2zH(1 +z* + 28)

. = .

_1-231-2°51-2° 1—21?

T 1z 1-2z21-2% 1—-2%

11 1 1 1

T1l-z 1--:0:2 1-2z41-251-2'

_H( keN3,{k>

which is exactly the generating function for the number of partitions of n
into parts the sizes of which are not divisible by 3. g

Theorem 5.3.2 has the following generalization that was discovered by
J.W.L. Glaisher in 1883.

Theorem 5.3.3. [G] For any n,k € N, the number of partitions of
n into parts, each of which appears at most k times, s equal to the number
of partitions of n into parts the sizes of which are not divisible by k+1. g

We leave the proofs of this and the following result as exercises for the
reader (see Problems 5.59).

Theorem 5.3.4. For any n € N, the number of partitions of n into
parts each of which appears at least twice ts equal to the number of partitions
of n into parts the sizes of which are not congruent tol or —1 (mod 6). g

Theorem 5.3.4 first appeared in the literature as an exercise in the book
[Anl] by Andrew. Interested readers may read the paper by H.L. Alder
[Al] which gives a very comprehensive account of results and problems of
the Euler type.
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Ferrers Diagram

A convenient tool, in the form of a diagram, to study partitions of integers is
due to Norman M. Ferrers (1829-1903). The Ferrers diagram for a partition
n=n;+ny+ -+ ng of a positive integer n (ny > ny > --- > ng) is an
array of asterisks in left-justified rows with n; asterisks in the ith row. For
each partition P of an integer, we shall denote by F(P) the Ferrers diagram
for P.

Example 5.3.6. Let P be the partition of the number 15 as shown
below:
P:15=6+3+3+2+1.

Then, the Ferrers diagram F(P) of P is:

* K K K k%
* % %

F(P): * k%
*
*

The transpose F* of a Ferrers diagram is the Ferrers diagram whose
rows are the columns of F. Thus the transpose of the Ferrers diagram
above is:

* %
*

* ¥ ¥
* ¥ ¥

F(P):

* ¥ ¥ ¥ * ¥

which gives another partition of 15:
Q:15=5+4+3+1+1+1. g

Two partitions of n whose Ferrers diagrams are transpose of each other
are called conjugate partitions. Thus, P and @ in the above example are
conjugate partitions. It follows readily from the definition that the number
of parts in P (which is 5, the number of rows in F(P)) is equal to the largest
size in Q (which is the number of columns in F(P)'). This observation

enables us to have the following simple proof of another result, also due to
Euler.
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Theorem 5.3.5. (Euler) Let k,n € N with k < n. Then the number
of partitions of n into k parts is equal to the number of partilions of n into
parts the largest size of which is k.

Proof. Let P be the family of all partitions of n into k parts and Q
be the family of all partitions of n into parts the largest size of which is k.
Define a mapping f : P — Q as follows: For each P € P, we put f(P) to
be the partition of n whose Ferrers diagram is F(P)* (i.e., f(P) is just the
conjugate of P). It is easy to see that f establishes a bijection between P
and Q. Thus |P| = |Q|, by (BP). g

We illustrate the above proof for n = 8 and k = 3 by the following table:

partitions of 8 partitions of 8 into parts
into 3 parts the largest size of which is 3
P f(P)

6+1+1 — 3+1+14+1+1+1
5+2+1 — 3+2+1+1+1
44+3+1 — 3+2+4+2+1
44242 — 3+3+1+1
3+3+2 — 3+3+2

An application of Theorem 5.3.5 is given in the following example.

Example 5.3.7. Let a, denote the number of ways of distributing r
identical objects into 3 identical boxes such that no box is empty. Find the
generating function for (a,).

Solution. First, note that a, is equal to the number of partition of r
into 3 parts. Thus by Theorem 5.3.5, a, is equal to the number of partitions
of r into parts the largest size of which is 3. With this observation, we can
now obtain the generating function for (a,), as shown below:

(1+z+22+---)(1+1:2+z4+~-)(:c3+ze+--~)
(size 1) (size 2) (size 3)

z3

QA-z)(1-25)(1-23) "
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Remark. The reader should notice that the third factor on the LHS
of the above equality is (z3+ 2%+ - -) rather than (1+z3+z%+---) (why?).
As an immediate consequence of Theorem 5.3.5, we have:

Corollary. Let m,n € N with m < n. Then the number of partitions
of n into at most m parts is equal to the number of partitions of n into
parts with sizes not exceeding m. g

For a detailed and advanced treatment of the theory of partitions of
numbers, we refer the reader to the book [An2] by Andrew.

5.4. Exponential Generating Functions

From the problems as discussed in the previous two sections, we see that
(ordinary) generating functions are applicable in distribution problems or
arrangement problems, in which the ordering of the objects involved is
immaterial. In this section, we shall study the so-called “exponential gen-
erating functions” that will be useful in the counting of arrangements of
objects where the ordering is taken into consideration.

The ezponential generating function for the sequence of numbers (a,) is
defined to be the power series

2 23 z"
oy Fasgrt bt Zar

r=0

ao+a1 +ax-

1
Example 5.4.1. (1) The exponential generating function for

(1,1,..,1,..) is
i z . =
r=0 _'- -

(This explains why the name “exponential generating function” is used, as
it includes the exponential function e” as a special case.)

(2) The exponential generating function for (0!,1!,2!,...,7!,...) is

Ejr' -1+z+z2+-~-= 1
r! l1-2
r=0
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(3) The exponential generating function for (1,k,k?,...,k",...), where
k is a nonzero constant, is

T T

Example 5.4.2. Show that the exponential generating function for
the sequence

(1,1-3,1-3-5,1-3-5-7, ...)
is (1 -22)~3.
Proof. It suffices to show that the coefficient of z" in (1 — 22)~% is

135 (2r+1)
r!

Indeed, the coefficient of z" in (1 —22)~% = 12, ('i§)(—2z)‘ is
(_2)7'( ')_( 2)" 5)(—'2'_1)"’(—5-r+1)

rl

= (-2 (- 1),.3 5.7 r.(2r+1) .5.;'.!(2,._'_1)’

as required. g

Ezponential generating functions for permutations

Recall that P denotes the number of r-permutations of n distinct objects,
and

Then
P nZ = z" = (1 )",
rZ_% Zo (D)er=a+a
Thus, by definition, the exponential generating function for the sequence
(PM)r=01,.. i8 (1 + )"
Note that

z! z! z!
(1+z)"=(1+—1!—)(1+ﬁ "'(1+'1"!'),
1) (2) (n)
where, as before, each bracket on the RHS corresponds to a distinct object
in the arrangement.
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Example 5.4.3. Let a, denote the number of r-permutations of p

identical objects. The exponential generating function for (a,) is
zP
1+ = T +Z o

since a, = 1 for each r =0,1,2,...,p and a, =0for eachr>p. g

- o

Example 5.4.4. Let a, denote the number of r-permutations of p
identical blue balls and ¢ identical red balls. The exponential generating
function for (a,) is

1+ +2,+ + ,)(1+ +2,+ + ,) "

(B) (R)

In general, we have

Let a, denote the number of r-permutations of the multi-set
{n1:-b1,n2 -ba,...,np - by }.

Then the exponential generating function for (a,) is

z z "k
(l+ﬁ+' ')(l-l- + o+ 2) '~(l+ﬁ+"'+;k-!"),
(b1) (ba) (bx)

and a, is the coefficient of ‘;'—: in the expansion of the above product.

Example 5.4.5. In how many ways can 4 of the letters from PAPAYA
be arranged?

Solution. Let a, be the number of r-permutations of the multi-set
{3-4,2.-P,1.Y}
formed by all the letters from PAPAYA. Then the exponential generating
function for (a,) is
. z?2 8 1 22 z!
(1+-1—!'+—2T+¥)(1+F+5)(1+T!-).
(A) (P) ()
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Grouping the like terms z* in the product, we have

z? z2 z2 22 z3 z3
z.a.z+a.z.z+ﬁ.a.1+§.z.1+_3.!_.1.z
zt
045)
where
4! 4! 4! 4! 4!
a4 = Bl +

. 27 T toa 3
{A,2P,Y} {2:APY} {2A2P} {3AP} {3AY}

which is the required answer. g

Example 5.4.6. Let (a,) denote the number of r-permutations of

the multi-set {00 - by, 00 - by,...,00 - bx}. Then the exponential generating
function for (a,) is

32 3 (o] (kx)r o0 zr
(1+z+§T+¥+~~)k=(e’)k=ek’=z%T=z(:)k';-!—.
r= r=

Thus, a, = k" for each r € N*. g

Example 5.4.7. For each » € N*, let a, denote the number of r-digit

quaternary sequences (whose digits are 0, 1, 2, 3) in which each of the digits
2 and 3 appears at least once. Find a,.

Solution. The exponential generating function for (a,) is

z? z?
I+t 5+ ) (@4 5+ )7 = () (" - 1)?
QN @ @
=e? (e —2¢" +1)
= 64::: - 263:1: +e2z
0 z"
=) (4 -2-3+2)—.
r=0 r

Thus, a, =4" —2-3" + 2" foreach r e N*. g
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Remark. Since

2 3

Section 5.4. Ezponential Generating Functions

n

s _1 z z
e = +x+§!-+—3—!+"'+m+"
and
_ z2 3 z"
e$=1_z+.2_!_¥+...+(_1)”_J+...’
we have:
2 4
e te?  _ iz o
hH— = gyt
ef—e"®  _ 8.2
_2_ — z+.§+g!—+...'

We note that, in the above expansions, ﬁ';: involves only even powers

e —e~ T
2

useful in solving the following problem.

of z whereas,

involves only odd powers of x. This observation is

Example 5.4.8. For each r € N*, let a, denote the number of r-digit

ternary sequences that contain an odd number of 0’s and an even number

of 1’s. Find a,.

Solution. The exponential generating function for (a,) is

et —e~% e e T o
2 2
) ) (2)
- %ez(ez@ e—Zz')
= % e —e7%)

=12 -

r=0

Thus, a, = 1{3" - (-1)"}. u
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Distribution Problems

We have seen in Sections 2 and 3 that the notion of (ordinary) generating
functions can be used to tackle distribution problems where the objects
to be distributed are identical. On the other hand, if we are to distribute
distinct objects into distinct boxes, then the notion of exponential gener-
ating functions turns out to be very helpful, as seen in the following two
examples.

Example 5.4.9. For each »r € N*, find a,, the number of ways of
distributing r distinct objects into 4 distinct boxes such that boxes 1 and 2
must hold an even number of objects and box 3 must hold an odd number
of objects.

Before giving the solution, we shall see how the given distribution prob-
lem can be transformed into the problem of finding the number of certain
r-digit quaternary sequences. Assume here that the 4 digits used are 1,2,3
and 4. Then a, is the number of r-digit quaternary sequences that contain
an even number of 1’s, an even number of 2’s and an odd number of 3’s.
For instance, when r = 7, the correspondence between such distributions
and quaternary sequences is illustrated in the following figure.

® |0 ®
® 1l @l @ | ® | ~ 2312144
1 | 2 3 4

®| © | ®

@ | OO | @ | « 3442323
1 | 2 3 4

Note that a ball labelled i is placed in a box labelled j if and only if j occurs
in the ith position in the corresponding quaternary sequence. For instance,
in the sequence 3442323, there are two 4’s in the 2nd and 3rd positions;
and thus, in this distribution, balls labelled 2 and 3 are placed in box 4.

In view of the correspondence mentioned above, we can now used the
notion of exponential generating function to solve the given distribution
problem.
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Solution. The exponential generating function for (a,) is

e +e 7\ e”—e"") o
2 2

(1)@) 3) 4
— %(623 _ 6—21:)(62:!: + 1)
— %(643 -1+ e2.':: _ e—Za:)
D S i(f +2" - (-2)')5
8 v |

Thus, a, = £ {4" + 2" — (-2)"}, foreach r € N. g

Example 5.4.10. For each » € N*, find a,, the number of ways of
distributing r distinct objects into n distinct boxes such that no box is
empty.

Solution. The exponential generating function for (a,) is

(z+ ;—j+;—?+~-)"
= (" —1)"
= 2 (et
-£0E=)
= ; (;(-1)*' (’Z)(n - i)') 5

Thus, a, = Y i o(—1)!(}) (n—1)", which is the number F(r,n) of surjective
mappings from N,. to N,,, as shown in Theorem 4.5.1. g

Generally speaking, distribution problems can be classified into 4 types,
according to whether the objects to be distributed are identical or distinct
and the boxes containing these objects are identical or distinct. We end this
chapter by summarizing the results for these 4 types of problems that we
have obtained so far in the following table, where # denotes the number



Chapter 5. Generating Functions 211

of ways to distibute r objects into n boxes subject to the conditions in
columns 2 and 3 of the table.

Type r objects n boxes #
I distinct distinct n’
I identical distinct ("th
111 distinct identical Zn:l S(r,1)
i=
v identical identical number of partitions of
r into n or fewer parts

In this chapter, we have seen how generating functions can be used to
solve distribution problems of Types I, IT and IV. Briefly speaking, in a dis-
tribution problem, when identical objects are distributed to distinct boxes
(cf., Examples 5.2.4 and 5.2.5), the corresponding generating function for
each box is just an ordinary generating function. When distinct objects are
distributed to distinct boxes (cf., Examples 5.4.9 and 5.4.10), we introduce
an exponential generating function for each box. The case when identical
objects are distributed to identical boxes (cf., Example 5.3.7) is just a par-
tition problem and we introduce an ordinary generating function for the
size of each part in the partition.

Exercise 5

1. Find the coefficient of z2° in the expansion of (z3 + z* + 25 + .- .)3.

2. Find the coefficients of z° and z!* in the expansion of (1 + z + 2% +
R 35)4'

3. Prove Theorem 5.1.1 (iv), (vi), (viii), (ix) and (x).

4. Find the generating function for the sequence (c), where ¢o = 0 and
¢ =Y ;- i for r € N. Hence show that

e-(2) (1)

i=1



212 Ezercise 5

5. Find the generating function for the sequence (c,), where ¢, = Y°;_, 2

10.

11.

12.

with » € N*. Hence show that

.
iz =2+(r— 127,

i=0

. (i) For r € N*, let a, = £ (*"). Show that the generating function for

the sequence (a,) is given by (1 — z)~ 3.
(ii) Using the identity

(1-2) ' =(1-2)3(1-2)F,

2 () (0o0) -

show that

for each n € N*.

. Show that
() =77
Z r =n .
r=1 \T/\T n
. Find the number of ways to distribute 10 identical pieces of candy to 3

children so that no child gets more than 4 pieces.

. Find the number of ways to distribute 40 identical balls to 7 distinct

boxes if box 1 must hold at least 3, and at most 10, of the balls.

Find the number of ways to select 2n balls from n identical blue balls,
n identical red balls and n identical white balls, where n € N.

In how many ways can 100 identical chairs be divided among 4 different
rooms so that each room will have 10, 20, 30, 40 or 50 chairs?

Let a, be the number of ways of distributing r identical objects into 5
distinct boxes so that boxes 1, 3 and 5 are not empty. Let b, be the
number of ways of distributing r identical objects into 5 distinct boxes
so that each of the boxes 2 and 4 contains at least two objects.

(i) Find the generating function for the sequence (a,).

(ii) Find the generating function for the sequence (b,).

(iii) Show that a, = b4y foreach r=1,2,....



13.

14.

15.

16.

17.

18.
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For » € N*, let a, denote the number of integer solutions to the equation
yte2tez=r
where 3 < 21 <9, 0 <z, <8 and 7 < z3 < 17. Find the generating

function for (a,), and determine the value of ass.

In how many ways can 3000 identical pencils be divided up, in packages
of 25, among four student groups so that each group gets at least 150,
but not more than 1000, of the pencils?

Find the number of selections of 10 letters from “F,U,N,C,T,I,0”
that contain at most three U’s and at least one O.

Find the generating function for the sequence (a,) in each of the follow-

ing cases: a, is

(i) the number of selections of r letters (not necessarily distinct) from
the set {D, R, A,S,T,I,C} that contain at most 3 D’s and at least
2 T’s;

(ii) the number of partitions of r into parts of sizes 1, 2, 3, 5, and 8;

(iii) the number of partitions of r into distinct parts of sizes 5, 10, and
15;

(iv) the number of partitions of = into distinct odd parts;

(v) the number of partitions of r into distinct even parts;

(vi) the number of integer solutions to the inequality
zi+zatzs+zat+as<r

with 1 < &; <6 foreach:=1,2,...,5.

Find the number of 4n-element multi-subsets of the multi-set

{(3n) - z,(3n) - y,(3n) - 2},
where n € N.

Find the number of 3n-element multi-subsets of the multi-set
M={n-z,n -22,...,n-zm},

where n,m € N and n,m > 3.
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19
20

21.

22

23.

24.

25.

. What is the probability that a roll of 5 distinct dice yields a sum of 17?7

. Find the generating function for the sequence (a,), where a, is the

number of ways to obtain a sum of » by a roll of any number of distinct
dice.

For k,m € N and r € N*, let a, denote the number of ways of distribut-
ing r identical objects into 2k + 1 distinct boxes such that the first £+ 1
boxes are non-empty, and b, denote the number of ways of distributing
r identical objects into 2k + 1 distinct boxes such that each of the last
k boxes contains at least m objects.

(i) Find the generating function for the sequence (a,);
(ii) Find the generating function for the sequence (b,);
(iii) Show that a, = b, (m—1)k-1-

. Find the generating function for the sequence (a,), where @, is the

number of integer solutions to the equation
1+ 222+ 33 +4z4 =71

with z; > 0 for each ¢ =1,2,3,4.

For r € N*, let a, denote the number of ways of selecting 4 distinct
integers from {1,2,...,7} such that no two are consecutive. Find the
generating function for (a,) and deduce that a, = (";%).

For r € N*, and m,t € N, let a, denote the number of m-element
subsets {n1,n3,...,nn} of the set {1,2,...,r}, where ny <nz < --- <
N, and njyq —n; >t foreach i =1,2,...,m — 1. Find the generating
function for (ar) and deduce that

ar:(r—(m—l)(t—l)).

m

(See Problem 1.91.)

For r € N*, let a, be the number of integer solutions to the inequality
zy+z2tazstza <,

where 3 <1 <9, 1 <3 <10, z3 > 2and z4 > 0. Find the generating
function for the sequence (a,) and the value of az.
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26. Prove that if —1 < @ < 0 and n € N*, then

() z 0 ()

while if & < —1, the inequality is reversed. (Proposed by S. I. Rosen-
crans, see Amer. Math. Monthly, 79 (1972), 1136.)

27. For n € N, let

=S {(0)+ () ()
{Q:J+Q:Q+”+Cﬂ'

Let B(z) be the generating function for the sequence (bx), where by =
@) + @)+ + ()
(i) Show that
(+2)"
-z

B(z) =

(ii) Find the generating function for the sequence (@, ), and deduce that

4y = ,.2.:1 (2:) (n—7).

r=0

n(2n
apn-1 =§(n)

(G. Chang and Z. Shan, 1984.)

(iii) Show that

28. For m,n € N and r € N*, a generalized quantity (:)m of binomial
coefficients is defined as follows:

T/ m 0 otherwise,

n -1
() =Z( ) for n > 2.
™/ m t=0 r—t m

and
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Note that (7), = (7). Show that

(i) (7),, is the number of integer solutions to the equation
g1 +T2+ ot Ta=r

with 0 <z; <m-—1foreachi=1,2,...,n;
(i) @) =1
(i) (}),, =n, where m > 2;
() (}),, =(5),,, where r + s = n(m — 1);
W) LG ()= m
(vi) the generating function for ((:)m)r=o,1,2,... is(l+z+---+z™ 1)
0 if mis even

(vii) =1 (), = {
1 if mis odd

(Viii) zn(m—l) r(:)m — n(m-1)m" |

r=1 2 ’
0 if m is even
(ix) Ty D(=1)-1r(}),, =

2l-m) i m is odd

(x) Xizo (‘i’)m(rii)m = (ptq)m’ where p,q € N;

(1) (1), = Lico(D () (7RIT™).
(See C. Cooper and R. E. Kennedy, A dice-tossing problem, Cruz Math-
ematicorum, 10 (1984), 134-138.)

29. Given n € N, evaluate the sum
- 2n—r
Sn - Z 21’—2” ( ) .
r=0 n
(Proposed by the Israeli Team at the 31st IMO.)
30. For each r € N*, let

ar=1-4-7---(3r+1).

Show that the exponential generating function for the sequence (a,) is
given by (1 - 3z)~3.



31.

32.

33.

34.

35.

36.

37.

38.
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For n € N, find the number of ways to colour the n squares of a 1 x n
chessboard using the colours: blue, red and white, if each square is
coloured by a colour and an even number of squares are to be coloured
red.

Find the number of n-digit quaternary sequences that contain an odd
number of 0’s, an even number of 1’s and at least one 3.

For n € N, find the number of words of length n formed by the symbols:
a,B,7,6,¢, ) in which the total number of a’s and f’s is (i) even, (ii)
odd.

For » € N*, find the number of ways of distributing r distinct objects
into 5 distinct boxes such that each of the boxes 1, 3, and 5 must hold
an odd number of objects while each of the remaining boxes must hold
an even number of objects.

Prove the following summations for all real z :

() Theo (30 G202 = Gr)

(i) Theo (i) G202+ = (G11D)-

(Proposed by M. Machover and H. W. Gould, see Amer. Math.
Monthly, 75 (1968), 682.)

Prove that

n r

Sk ()i g

r\k ’

r=1 k=0
where n = 2,3,4,.... (Proposed by G. M. Lee, see Amer. Math.
Monthly, 77 (1970), 308-309.)
Prove that

z 1 _l n—1
kl!kz!“'kn!_r! r—1)’

where the sum is taken over all ky,k3,...,k, € N* with Y 0 ki =7
and }_;_, ik; = n.

(Proposed by D. Z. Djokovié, see Amer. Math. Monthly, 77 (1970),
659.)

Ten female workers and eight male workers are to be assigned to work
in one of four different departments of a company. In how many ways
can this be done if
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39.

40.

41.

42.

43.

(i) each department gets at least one worker?

(ii) each department gets at least one female worker?

(iii) each department gets at least one female worker and at least one

male worker?

For » € N*, find the number of r-permutations of the multi-set
{oo-a, oo-ﬁ, o0 -7, OOA}

in which the number of a’s is odd while the number of \’s is even.

For r € N* and n € N, let a, = F(r,n), which is the number of ways
to distribute » distinct objects into n distinct boxes so that no box is
empty (see Theorem 4.5.1). Thus a, = n!S(r,n), where S(r,n) is a
Stirling number of the second kind. Find the exponential generating
function for the sequence (a,), and show that for r > 2,

[oe]

> (-1)"miS(r,m +1) =0.

m=0

For n € N, let A,(z) be the exponential generating function for the
sequence (S(0,n), S(1,n),..., S(r,n),...). Find A,(z) and show that

%An(z) = nAn(:B) + An—l(z))

where n > 2.

Let Bo =1 and for r € N, let B, = Y} _, S(r, k). The numbers B,’s

are called the Bell numbers (see Section 1.7). Show that the exponential

generating function for the sequence (B, ) is given by " 1.

Let n € N and r € N*.

(a) Find the number of ways of distributing r distinct objects into n
distinct boxes such that the objects in each box are ordered.

(b) Let a, denote the number of ways to select at most r objects from
r distinct objects and to distribute them into n distinct boxes such
that the objects in each box are ordered. Show that

(i) ar = 3ig (()n®), where n() = n(n+1)---(n+i—1) withn(® = 1;



44,

45

46.

47.

48.
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(i) the exponential generating function for the sequence (a,) is given by
e (1—-z)™".

Find the generating function for the sequence (a,) in each of the follow-
ing cases: a, is the number of ways of distributing r identical objects
into

(i) 4-distinct boxes;

(ii) 4 distinct boxes so that no box is empty;

(iil) 4 identical boxes so that no box is empty;

(iv) 4 identical boxes.

. For n € N, show that the number of partitions of n into parts where no

even part occurs more than once is equal to the number of partitions of
n in which parts of each size occur at most three times.

For r € N* and n € N, let a, be the number of integer solutions to the
equation

i+ x2t -t =,
where 1 > 23 > -+ > z, > 1. Find the generating function for the
sequence (ay).

For » € N* and n € N, let b, be the number of integer solutions to the
equation

z1+z24+---+z,=1,

where 1 > 23 > -+ > z, > 0. Find the generating function for the
sequence (b,).

For » € N* and n € N, let a, denote the number of ways to distribute
r identical objects into n identical boxes, and b, denote the number of
integer solutions to the equation

n
Z kzy=r
k=1

with z > 0 foreach k = 1,2,...,n. Show that a, = b, for each r € N*.
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49.

51.

52.

53.

54.

55.

56.

57.

For » € N*, let a, denote the number of partitions of r into distinct
powers of 2.

(i) Find the generating function for (a,);
(ii) Show that a, =1 for all r > 1;

(iii) Give an interpretation of the result in (ii).

50.

Show that for n € N, the number of partitions of 2n into distinct even
parts is equal to the number of partitions of n into odd parts.

Let k,n € N. Show that the number of partitions of n into odd parts is
equal to the number of partitions of kn into distinct parts whose sizes
are multiples of k.

Let p(n) be the number of partitions of n. Show that

1
p(n) < 5(p(n+1) +p(n 1)),
where n € N with n > 2.

For n,k € N with k < n, let p(n, k) denote the number of partitions of
n into exactly k parts.

(i) Determine the values of p(5,1), p(5,2), p(5,3) and p(8, 3).
(ii) Show that

Ep(n’ k) = p(n + m,m),
k=1

where m € N and m < n.

(i) With p(n,k) as defined in the preceding problem, determine the
values of p(5, 3), p(7,2) and p(8,3).
(ii) Show that

p(n—1,k—1)+p(n—k, k) = p(n,k).
Given n,k € N with n < k, show that
p(n + k, k) = p(2n,n) = p(n).
For n,k € N with k < n, show that

o2 5 (3 21):

Given n,k € N, show that the number of partitions of n into k distinct
parts is equal to p (n - ’;),k).
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58. Prove the corollary to Theorem 5.3.2.

59. (i) Prove Theorem 5.3.3
(ii) Prove Theorem 5.3.4.

60. For positive integers n, let C(n) be the number of representations of
n as a sum of nonincreasing powers of 2, where no power can be used

more than three times. For example, C(8) = 5 since the representations
for 8 are:

8,444, 44242, 44+24+14+1, and2+2+4+2+1+1.

Prove or disprove that there is a polynoimal Q(z) such that C(n) =
LQ(n)] for all positive integers n.

(Putnam, 1983.)

61. For n € N, let C(n) be the number defined in the preceding problem.
Show that the generating function for the sequence (C(n)) is given by

1
1+2)(1-=2)*

Deduce that C(n) = |22 | for each n € N.
62. (a) (i) List all partitions of 8 into 3 parts.

(ii) List all noncongruent triangles whose sides are of integer length
a, b, ¢ such that a+b+ c = 16.

(iii) Is the number of partitions obtained in (i) equal to the number
of noncongruent triangles obtained in (ii)?

(b) For r € N*, let a, denote the number of noncongruent triangles
whose sides are of integer length a, b, ¢ such that a + b + ¢ = 2r,
and let b, denote the number of partitions of r into 3 parts.

(i) Show by (BP) that a, = b, for each » € N*.
(ii) Find the generating function for (a,).
63. A partition P of a positive integer n is said to be self-conjugate if P and
its conjugate have the same Ferrers diagram.
(i) Find all the self-conjugate partitions of 15.
(ii) Find all the partitions of 15 into distinct odd parts.

(iii) Show that the number of the self-conjugate partitions of n is equal
to the number of partitions of n into distinct odd parts.
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64.

65.

66.

67.

68.

69.

70.

Show that the number of self-conjugate partitions of n with largest
size equal to m is equal to the number of self-conjugate partitions of
n — 2m + 1 with largest size not exceeding m — 1.

(i) The largest square of asterisks in the upper left-hand corner of the
Ferrers diagram is called the Durfee square of the diagram. Find the gen-
erating function for the number of self-conjugate partitions of » whose
Durfee square is an m X m square, where m € N.

(i) Deduce that

2

o0 o0 zm
142y =14 Y e o
11 PIY ey

Let A(z) be the generating function for the sequence (p(r)) where p(r)
is the number of partitions of r.

(1) Find A(z);
(if) Use the notion of Durfee square to prove that

=) ~ mk _
[g(l )] =1+ E Hk 1(1 - zk)?’

m=1
By considering isosceles right triangles of asterisks in the upper left-hand

corner of a Ferrers diagram, show that

pm(m+1)

1!2k =
H(1+ )= 1+an-(1_z2k)

m=1

Let p,¢,7 € N with p < r and ¢ < ». Show that the number of partitions
of r—pinto ¢—1 parts with sizes not exceeding p, is equal to the number
of partitions of » — ¢ into p — 1 parts with sizes not exceeding q.

For n € N, let p.(n) (resp., p,(n)) denote the number of partitions of
n into an even (resp., odd) number of distinct parts. Show that

. k(3k1
(=1F if n= Jz_l

0 otherwise.

Pe(n) — po(n) = {

Prove the following Euler’s pentagonal number theorem:

ﬁ(l _ zk) - i (_l)mz-}m(3m—l).
k=1

m=-00
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71. For n € N, show that
p(n) —p(n—1) = p(n—2) +p(n - 5)+ p(n - 7)
oo (<1)"p(n = gm(3m — 1)) +--

+(=1)"p(n — gm(3m+ 1)) 4+ =0.

72. For j € N*, let B(j) = :—”%L Prove the following Euler identity:
Y pn—BG)= Y p(n—BG))
Jjeven jodd
by (BP), where n € N.

(See D. M. Bressoud and D. Zeilberger, Bijecting Euler’s partitions-
recurrence, Amer. Math. Monthly, 92 (1985), 54-55.)

73. For r,n € N, let f(r,n) denote the number of partitions of n of the form
n=ny+n2+---+n,,

where, for ¢ = 1,2,...,5 — 1, n; > rn;y1, and let g(r,n) denote the
number of partitions of n, where each part is of the form 1+ r + r2 4
-++ 4 r* for some k € N*. Show that

f(r,n) = g(r,n).

(See D. R. Hickerson, A partition identity of the Euler type, Amer.
Math. Monthly, 81 (1974), 627-629.)
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Chapter 6

Recurrence Relations

6.1. Introduction

Let us begin our discussion with the following counting problem. Fig-
ure 6.1.1 shows a 1 x n rectangle ABCD, that is to be fully paved by two
types of tiles of different sizes: 1x 1 and 1 x 2. What is the number of ways
that this can be done?

A B Type 1 Type 2
D .0 .. 0000 00 °0°0°0
‘{ - o |3 ‘{ Seeesete
D ~ - - C N~ | S
n 1 2

Figure 6.1.1.

Well, after some thought, we may find that it is not so easy to get a
direct answer to the problem. Also, it seems that the methods we learnt in
the previous chapters are not of much help. Let us therefore use a different
approach. First of all, we consider some very special cases. When n = 1, it
is clear that there is one and only one way to pave the 1 x 1 rectangle:

A B

n=1 .Eo

D C

When n = 2, it is also easy to see that there are exactly 2 ways to pave
the 1 x 2 rectangle:

A B A B
%6%°|[ 0%6% 262626262020
— 0%%|| %% 020%620%0%
n= 2 ©%%]! ®e%® .00000000000
L) o 00 900000
D (o] D (o]

225
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When n = 3, there are 3 different ways as shown below:

A B A B A B
..... .. .. o ... .. ...0. °°0°0°°°0°°° 0°0°°°°°°°°° L) ....
— L O ) ® 00 L) ©,0.0.0,00 ©,.0.0,0,0.0 L)
n=3 ¢%%!| ®%°|| ¢®o% 049,01| 696969629 026%%0%%°]| ¢®¢%
L) L) ® o L] 000000 © 00 00 9 L)

D (o} D (o} D (o}

For convenience, let a, denote the required number of ways to pave the
1 x n rectangle ABCD. As shown above, we have

ai=1,a;=2, a3 =3.
If you proceed as before, you will find that
as =5, as = 8, etc.

However, up to this stage, we do not see any direct way of solving the
problem. Let us go back to analyze the case when n = 3. Paving the
rectangle ABCD from left to right, there are 2 possibilities for the first
step:

(i) a tile of type 1 is used;

A B

D Cc
or (ii) a tile of type 2 is used.

A B

D Cc

We now have a crucial observation. In case (i), a 1 x 2 rectangle is left
behind, while in case (ii), a 1 x 1 rectangle is left behind. As noted earlier,
there are a; = 2 ways to complete the paving in the former case, and a; = 1
way in the latter case. Thus by (AP),

az = as + aj.
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Can this relation for as be extended to an arbitrary term a,, n > 3?7 To see
this, we follow the same argument as we did before and obtain two cases
for the first step:

A B
L) .. ..
(i) w
A B
.. 96%0%%0%%
(ll) 305030505050
96%0%°%6°c%
D (o]

— n-2 —

In case (i), there are by definition a,_; ways to complete the paving
and in case (ii), there are a,_, ways to do so. Thus by (AP),

@p = @p_1 + ap_g, forn>3. (6.1.1)

Although, up till now, we have not been able to find a formula f(n) for a,,
we should be content with the relation (6.1.1), which at least enables us
to compute a,, indirectly from the preceding numbers a,—2 and a,_; (thus
a4 =az+az3=2+3=25,a5 =az+as =3+ 5 =8, and so on).

The relation (6.1.1) governing the sequence (a,) is called a recur-
rence relation for the sequence (a,). In general, given a sequence (an) =
(ao, @1,a2,...) of numbers, a recurrence relation for (a,) is an equation
which relates the nth term a, to some of its predecessors in the sequence.
Thus the following are some more examples of recurrence relations:

ap =ap-1+1
an —5an-1 +6a,_2=10
an + Tan_1 4+ 12a,_3 = 2"

n(n—1)a, = (n—1)(n —2)an_1 — (n — 3)an_2
An—1

(2n—1)ap-1+1

an =

To initiate the computation for the terms of a recurrence relation, we
need to know the values of some terms of the sequence (a,). They are called
tnitial conditions of the recurrence relation. For instance, to compute a,



228 Section 6.2. Two Ezamples

in the recurrence relation (6.1.1), we need to find out a; and a; before we
can proceed. The values a; = 1 and a; = 2 in this example are the initial
conditions.

The solution of a recurrence relation is an expression a, = g(n), where
g(n) is a function of n, which satisfies the recurrence relation. For instance,
the expression

ap, =n

is the solution of the recurrence relation a, = a,_1+1 with initial condition
a; = 1, since “a, = n” satisfies the recurrence relation (a, =n = (n—1)+
l=a,_1+ 1)

In combinatorics there are many problems that, like the above paving
problem, may not be easily or directly enumerated, but could be well han-
dled using the notion of recurrence relations. For each of these problems,
deriving a recurrence relation is the first important step towards its solution.
In this chapter, we shall gain, through various examples, some experience
of deriving recurrence relations. We shall also learn some standard meth-
ods of solving (i.e., finding solutions of) certain families of “well-behaved”

recurrence relations.

6.2. Two Examples

In this section, we introduce two counting problems that can be solved with
the help of recurrence relations. We begin with a famous problem, known
as the Tower of Hanoi, that was first formulated and studied by the French
mathematician Edouard Lucas (1842-1891) in 1883.

Example 6.2.1. A tower of n circular discs of different sizes is stacked
on one of the 3 given pegs in decreasing size from the bottom, as shown in
Figure 6.2.1. The task is to transfer the entire tower to another peg by a
sequence of moves under the following conditions:

(i) each move carries exactly one disc, and

(i1) no disc can be placed on top of a smaller one.
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Figure 6.2.1.

For n > 1, let a,, denote the mintmum number of moves needed to accom-
plish the task with n discs. Show that

ag=1,a;=3,a3="17

and ap =2a,_1+1 (6.2.1)
for n > 2. Solve also the recurrence relation (6.2.1).

Solution. Obviously, a; = 1. For n = 2, the 3 moves shown in
Figure 6.2.2 accomplish the task. It is clear that any two moves are not
enough to do so. Thus a; = 3.

e, o I W P
Jol A

Figure 6.2.2.

For n = 3, the 7 moves shown in Figure 6.2.3 do the job. Any 6 moves
are not sufficient to do so (why?). Thus az = 7.
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AN
P LA

Figure 6.2.3.

We shall now consider the general term a,, n > 2. The given task with
n discs can be accomplished via the following main steps:

1° Transfer the top (n — 1) discs from the original peg to a different peg
(see the first 3 diagrams in Figure 6.2.3);

2° Move the largest disc from the original peg to the only empty peg (see
the 4th and 5th diagram in Figure 6.2.3); and

3° Transfer the (n — 1) discs from the peg accomplished in step 1° to the
peg that the largest disc is currently placed (see the last 4 diagrams in
Figure 6.2.3).

The number of moves required in steps 1°, 2° and 3° are, respectively,
an-1, 1, and a,_;. Thus, we have provided a way with

Gny1+14+an1=2a,_1+1

moves to transfer the tower with n discs from one peg to another. By the
definition of a,, we have

a, <2a,-1+1. (1)
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On the other hand, we notice that for any way of transfering the tower
with n discs, the largest disc at the bottom has to be moved to an empty peg
at some point, and this is possible only when step 1° has been performed.
To complete the task, step 3° has to be done somehow. Thus, any way of
transfering requires at least 2a,_; + 1 moves; i.e.,

a, > 2a,-1 + 1. (2)
Combining (1) and (2), we obtain
@, =2an-1+1,

as required.

Finally, we shall solve the recurrence relation (6.2.1) with the initial
condition a; = 1 as follows: for n > 2,

a, =2a,_1+1
=22ap—2+1)+1
=2%a,_,+2+1
=2%(2ap_3+1)+2+1
=2%a,_3+22+2+1

=2""la + 2" 2 +2" 3 4. 4241
=2""142" 24 ... 4241

12" -1)

T o2-1

=2"-1

Thus, a, = 2" — 1 is the required solution. g

Remarks. (1) The above method of obtaining a solution is often
referred to as the backward substitution.
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(2) The recurrence relation (6.2.1) is a special example of the following
recurrence relation:

@, =pay,_1+q withagy=r (6.2.2)

where p,q and r are arbitrary constants. It can be proved (see Problem
6.12) that the solution of (6.2.2) is given by

r+qn ifp=1,
a, = .
" rp"+£”p—::17- ifp#1.

Recall that in Example 2.5.3, we evaluated the number g(n) of paral-
lelograms contained in the nth subdivision of an equilateral triangle, and
found that g(n) = 3("}%). In what follows, we shall give another proof of
this result by the method of recurrence relation.

Example 6.2.2. Let a, denote the number of parallelograms con-
tained in the nth subdivision of an equilateral triangle. Find a recurrence
relation for a, and solve the recurrence relation.

Solution. Let ABC of Figure 6.2.4 be a given equilateral triangle.
For convenience, call a point of intersection of any 2 line segments in the
nth subdivision of AABC a node. Thus there are altogether

1
14243+ +(n+2) = 3(n+2)(n+3)

nodes in the nth subdivision of AABC.

Clearly, a; = 3. For n > 2, observe that every parallelogram of the nth
subdivision of AABC contains either no node on BC as a vertex or at least
one node on BC as a vertex. Thus, if we let X be the set of parallelograms
of the latter case, then we have

n = apy +|X] . Q)

We shall now count |X| indirectly. Let Y be the set of pairs {u, v} of nodes
such that u is on BC, v is not on BC, and u,v are both not contained on
a common line segment. Define a correspondence from X to Y as follows:
given a parallelogram in X, let u and v be the opposite vertices of the
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A A A
v
AVIVAN
Bu/7 C B m C B s €

Figure 6.2.4.

parallelogram at which the angles of the parallelogram are acute (see Figure
6.2.4).

It is evident that this correspondence defines a bijection from X to Y.
Thus, by (BP),

IX|=1Y[. (2)

Since
(i) there are n + 2 nodes u on BC,

(ii) there are 14+2+---+(n+1) = 3(n+1)(n+2) nodes v not on BC,
and

(iii) » and v are not on a common line segment,
it follows, by (CP), that

[¥]=(n+2): 5(n+1)(n+2)~ (n+2)(n+1)

1
= E(n +1)(n+2)(n+2-2)

1
= En(n +1)(n+2)

n+2
= 3( 3 ) ®3)
Combining (1), (2) and (3), we arrive at the following recurrence relation
p = an_1 + 3(" ; 2) (6.2.3)

for n > 2.
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To solve the recurrence relation (6.2.3), we apply the backward substi-
tution to obtain the following:

2
a, =an-1+3(n; )

1 +2
(1) (1)

;a1+3(;) +...+3(";1) +3(";2)
(0414 C)

=3 (" : 3) (by identity (2.5.1)).

Thus, a, = 3(";'3) is the required solution. g

Note. The recurrence relation (6.2.3) is not a special case of the
recurrence relation (6.2.2) since the term 3(*}?) in (6.2.3) depends on “n”,
and is thus not a constant.

6.3. Linear Homogeneous Recurrence Relations

In Examples 6.2.1 and 6.2.2, we solved the recurrence relations (6.2.1) and
(6.2.3) using the method of backward substitution. Of course, not every
recurrence relation can be solved in this way. In this and the next section,
we shall introduce a general method that enables us to solve a class of
recurrence relations, called linear recurrence relations. For the first step
towards this end, we consider a sub-class of linear recurrence relations,
called linear homogeneous recurrence relations.

Let (an) be a given sequence of numbers. A recurrence relation of the
form:

Coln +C1an-1+ -+ ¢rap_r =0 (6.3.1)

where the c¢;’s are constants with co,c, # 0, and 1 < r < n, is called an rth
order linear homogeneous recurrence relation for the sequence (a,,).



Chapter 6. Recurrence Relations 235

For instance, the recurrence relations
Gn =ap-1 +an-2

and a, —2a,-1+3a,_2—5a,.3=0
are, respectively, linear homogeneous recurrence relations of 2nd and 3rd
order.

Replacing the terms “a;” by “z*”,i=n,n—1,...,n —r, in (6.3.1), we
obtain the following equation in “z”:

coz” + 12" ez izt " =0

or cox” +c1z” 4 ez™ 4+ c,..'lz +c¢ =0 (6.3.2)
The equation (6.3.2) is called the characteristic equation of (6.3.1). Any

root of the equation (6.3.2) is called a characteristic root of the recurrence
relation (6.3.1).

The notion of characteristic roots of a linear homogeneous recurrence
relation plays a key role in the solution of the recurrence relation, which is
shown in the following two results.

(I If ay,as,...,a, are the distinct characteristic roots of the re-
currence relation (6.3.1), then

ap = A1(a1)" + Az(a2)” + -+ + Ar(ar)”,

where the A;’s are constants, is the general solution of (6.3.1)

(I1)  ai,az,..,ar (1 < k < r) are the distinct characteristic roots
of (6.3.1) such that a; is of multiplicity m;, ¢ = 1,2, ..., k, then
the general solution of (6.3.1) is given by

an = (A1 + Argn + - - Ay, 0™ 1) (0)”
+ (A21 + Agon + + - - Ao, n™ ) (ap)”
+
+ (Ak1 + Apan + -+ - Agm, 0™ 1) ()",

where the A;;’s are constants.
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Result (I) is a clearly a special case of result (II). The proofs of these
results can be found in many standard books in combinatorics (see, for
instance, Roberts [12], pp. 210-213). Here, we shall only give a number of
examples to illustrate the use of these results.

We first solve the recurrence relation obtained in the problem of paving
a rectangle that is discussed in Section 1.

Example 6.3.1. Solve the recurrence relation
Ap = Gp—1 + An-2 (6.1.1)

given that ap = 1 and a; = 1.

Notes. (1) Since the recurrence relation (6.1.1) is of 2nd order, we
need two initial conditions to solve it.

(2) The original initial conditions for the paving problem are “a; =1
and a; = 2”. We replace “as = 2” by “ap = 1” here simply for the ease of
computation that could be seen later. Such a replacement does not affect

the solution since ag = 1, a; = 1 and a3 = 2 satisfy the recurrence relation
(6.1.1).

Solution. The recurrence relation (6.1.1) may be written as
an — @p-1 —ap-2=0.

Its characteristic equation is

2?-2z-1=0,

and its characteristic roots are

145

1-v5
> .

2

1=

and a3 =

Thus, by result (I), the general solution of (6.1.1) is given by
n n
a,._—.A(l';‘/g) +B(1"2‘/5) , 1)

where A and B are constants to be determined.
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The initial conditions ap = @; = 1 imply that
A+B=1
) (91

A+B=1
2
{(A+B)+¢§(A-B)=2. @

ie.,

Solving the system (2) for A and B gives

A= 1 5
2 v 5 . (3)
B = —-f% .
(Determining A and B using the initial conditions a; = 1 and a2 = 2 is
more tedious than the above. This is the advantage of using ap = a; = 1.)

By substituting (3) into (1), we obtain the desired solution of (6.1.1):
oo (1B (145)" _ [1=v5) (1=vE)".
n = 2\/5 9 2\/5 9 ’

n+l n+1l
ap = -\}? [(“2‘/5) - (1‘2‘/5) ] : (6.3.3)

foralln>0. g

From the recurrence relation (6.1.1) and the initial conditions ap = a; =
1, we obtain the first few terms of the sequence (a,) as shown below:

ie.,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

These numbers were named Fibonacci numbers by the French mathe-
matician Edouard Locus (1842-1891), as they arose from a famous problem
- the rabbit problem (see Problem 6.51) that was contained in the book
“Liber Abaci” (1202) written by one of the great mathematical innovators
of the Middle Ages, Leonardo Fibonacci (1175-1230) of Pisa. The beautiful
formula (6.3.3) for the nth Fibonacci numbers is called the Binet formula
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after the French mathematician Jacques-Phillipe-Marie Binet (1786-1856).
This formula was also derived independently by de Moivre (1667-1754) and
D. Bernoulli (1700-1782). Locus had done a great deal of work on Fibonacci
numbers, and the following variation of numbers:

2, 1,3, 4,7, 11, 18, 29, 47, 76, 123, 199, ...

bears his name.

In 1963, the American mathematician Verner E. Hoggatt, Jr. and his
associates set up an organization, called the Fibonacci Association at the
University of Santa Clara, in California, U.S.A.. Since then, the Associ-
ation has been organizing a series of Fibonacci conferences, including the
First International Conference on Fibonacci Numbers and Their Applica-
tions held in Patras, Greece. The Association has even been publishing an
international mathematical journal, called the Fibonacci Quarterly for the
promotion of all kinds of research related to Fibonacci numbers.

Fibonacci numbers and their related results can now be found in many
branches of mathematics such as Geometry, Number Theory, Combina-
torics, Linear Algebra, Numerical Analysis, Probability and Statistics, and
in other disciplines outside of mathematics like Architectural Designs, Biol-
ogy, Chemistry, Physics, Engineering, and so on. For those who wish to find
out more about these numbers, the following books: Vorobyov [Vo], Hog-
gart [Hg), Vajda [Va ], and the article by Honsberger (see [Hn], p.102-138)
are recommended.

Example 6.3.2. Solve the recurrence relation
ay, — 7a,-1 + 15a, -2 — 9a,_3 =0, (6.3.4)
given that g = 1,e¢; =2 and a3 = 3.
Solution. The characteristic equation of (6.3.4) is
22— T2 +152 -9 =(z—3)%(z - 1)=0
and thus the characteristic roots of (6.3.4) are

a; =3 (of multiplicity 2)

and ag =1.
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By result (II), the general solution of (6.3.4) is given by

an = (A+ Bn)(3)" + C(1)";
ie, an,=(A+ Bn)3" +C, (1)

where A, B and C are constants to be determined.

The initial conditions
a=1, a; =2, anday =3
imply that
A +C =1
3A + 3B +C = (2)
9A +18B +C =3.
Solving the system (2) yields

A=1, B=—§- and C=0. 3)

It follows from (1) and (3) that the required solution of (6.3.4) is given
by
n
ap, =(1- 5)3"

or a,=(3-n)3""! forn>0. g

In solving a polynomial equation, it is possible to obtain complex roots.
In this case, it is sometimes convenient to express such roots in trigono-
metric form. We also note that if « = a + bi is a complex roots of a real
polynomial equation P(z) = 0 (i.e., all the coefficients of P(z) are real),
then its conjugate & = a — bi is also a root of P(z) = 0; i.e., complex roots
of P(z) = 0 always occur in conjugate pairs. An example of this type is
given below.

Example 6.3.3. Solve the recurrence relation
an = 2(@n-1 — an-2) (6.3.5)

given that ap = 1 and a; = 0.
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Solution. The characteristic equation of (6.3.5) is
z2-2242=0
and its roots are
a=14¢ and a=1-i.

Expressing @ and @ in trigonometric form, we have

a= \/i(cos§+ isin %)

and &= v2(cos T _isin 1).
4 4
Thus the general solution of (6.3.5) is given by

an, = A(a)™ + B(a)"
» { Afcos ™™ 4 isin ™" L
= (V2) {A(cos 1 +isin 4)+B(cos 7~ isin 4)}
= (V2)*(C cos 941 + Dsin %),

where C = A+ B and D = i(A — B) are constants to be determined.

The initial conditions ap = 1 and a; = 0 imply that
cC=1
V2(EC +¥D) =0;
ie. C=1 and D=-1
Thus the required solution of (6.3.5) is
an = (V2)"(cos % —sin %)

forn>0. g
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6.4. General Linear Recurrence Relations

Let (a,) be a given sequence of numbers. A recurrence relation of the form
CoGy + C1Gn-1 + e + CrGp—yp = f(n) (6.4.1)

where the ¢;’s are constants with ¢g,¢, # 0,1 < r < n, and f is a function
of n, is called an rth order linear recurrence relation for the sequence (a,).

Thus a linear homogeneous recurrence relation is a linear recurrence
relation of the form (6.4.1) in which f(n) = 0 for all n. While the recurrence
relations

ap —2a,-1=1 (6.2.1)

n — Gnoy = 3(" '?"' 2) (6.2.3)

are examples of linear recurrence relations of first order, the recurrence
relation

an + 76,._1 + 120”.-.2 = 2”

is a 2nd order linear recurrence relation.

How can we solve a linear recurrence relation of the form (6.4.1)? A
way to do so is given below:

Step 1°. Find the general solution as.h) of the linear homogeneous

recurrence relation obtained from (6.4.1)

Colp + C18n—1 + -+ Cr8p_, = 0.

Step 2°. Find a particular solution af ) of (6.4.1).
Step 3°. The general solution of (6.4.1) is given by

an = a®) 4 alP), (6.4.2)
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Remarks. (1) Those who are familiar with the theory of differen-
tial equations may note the analogy between the above method of solving
general linear recurrence relations and a corresponding method of solving
linear differential equations.

(2) The method of finding afP in Step 1° has been discussed in the
preceding section.

(3) There is no general way of finding as,” ) in Step 2°. However, as.p )
g

could be found by inspection if the function ‘f’ in (6.4.1) is relatively simple.
For instance, if f(n) is a polynomial in n or an exponential function of n,
then a® could be chosen as a function of similar type. We shall further
elaborate this point through the following examples.

Example 6.4.1. Solve the recurrence relation
an — 3ap_1 = 2 — 2n? (6.4.3)
given that ag = 3.

Solution. First of all, we find as,h). The characteristic equation of

a, —3a,_1=0
is £ — 3 = 0, and its root is « = 3. Thus
aP =A.3", (1)

where A is a constant.

Next, we find afP. Since f(n) = 2 —2n? is a polynomial in n of degree
2, we let

a” =Bn>+Cn+D (2)
where B, C and D are constants.
Since af) satisfies (6.4.3), we have

(Bn?4+Cn+D)-3{B(n—-1)’ 4+ C(n—-1)+ D} = 2 - 2n2

Equating the coefficients of n%, n and the constant terms, respectively, on
both sides, we obtain:

C+6B-3C=0 3)

{B—3B=—2
D-3B+3C-3D=2.
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Solving the system (3) yields
B=1,C=3and D=2 (4)
It follows from (2) and (4) that
as,") =n243n+2.
By (6.4.2), the general solution of (6.4.3) is given by

an = a®) + aP)

=A-3"+n’4+3n+2. (5)
Putting ao = 3 (initial condition) in (5) gives
3=A+2, ie, A=1
Hence the required solution of (6.4.3) is

ap =3"+n2+3n+2, n>0 g

Example 6.4.2. Solve the recurrence relation
an —3ap_1 +2ap_o =2" (6.4.4)

given that ap = 3 and a; = 8.

Solution. The characteristic equation of a, — 3a,—1 + 2a,-2 = 0 is
z? — 3z 4+ 2 = 0, and its roots are 1 and 2. Thus

a®) = A()" + B(2)" = A+ B2". (1)
Corresponding to f(n) = 2", we may choose
af) = C2".

However, as the term 2" has appeared in (1), we need to multiply it by ‘n’,
and set

alP) = Cn2". (2)
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(For a more general way to choose such particular solutions, the reader is
referred to Table 6.4.1.)

Since alP) satisfies (6.4.4), we have:
Cn2" —3C(n —1)2""! 4+ 2C(n - 2)2"% = 2",

which implies that C = 2.
Thus, by (2),
as,”) = n2nt!

and so the general solution of (6.4.4) is

a, = a,(,") + agp)
= A+ B2" 4 n2"+L, (3)

It follows from (3) and the initial conditions ag = 3 and a; = 8 that

A4+ B=3
A+2B+4=28. (4)

Solving the system (4) gives
A=2 and B=1.
Thus the required solution of (6.4.4) is
ap =2+2"+0n2"*! forn>0. g

To end this section, we give in Table 6.4.1 more precise forms of a,(f ) for
some special functions f(n) in different situations.

In addition, we would like to point out that if f(n) is a sum of an
exponential function f;(n) and a polynomial fy(n), then a{P can be chosen
as the sum of the two particular solutions corresponding to fi(n) and f(n).

6.5. Two Applications

In this section, we shall apply what we have learnt in the preceding two
sections to solve two counting problems: one on the number of colourings
of a certain map and the other on the evaluation of determinants of certain
matrices.
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1 is a characteristic root of multiplicity m

f(n) a®
Exponential function

(1) Ak" Bk™

k is not a characteristic root
(ii) Ak™ Bn™k™

k is a characteristic root of multiplicity m

Polynomial

(@) Z:=o pin’ Ez=o an’

1 is not a characteristic root
(i) iz pint ™ Yio i’

(i)

Special combined function
Antk®
k is not a characteristic root
Antk™

k is a characteristic root of multiplicity m

(Z:=o qt‘"‘) k"

n™ (Z§=o qs'"‘) k"

Example 6.5.1.

Table 6.4.1

The n sectors, n > 1, of the circle of Figure 6.5.1

are to be coloured by k distinct colours, where k£ > 3, in such a way that
each sector is coloured by one colour and any two adjacent sectors must be
coloured by different colours. Let a, denote the number of ways this can
be done.

(i) Evaluate a,,a; and a3.

(i1) Find a recurrence relation for (a,), n > 4, and solve the recurrence

relation.

Solution. (i) Evidently, we have

and

a1=k,

as = k(k - l)

As shown in Figure 6.5.2, we have

as = k(k — 1)(k — 2).
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Figure 6.5.1.

k — 2 choices k choices

k — 1 choices
Figure 6.5.2.

(ii) It is no longer true that ay = k(k — 1)(k — 2)(k — 3). For n > 3,
we shall obtain a recurrence relation for (a,) in an indirect way. Imagine
that the circle of Figure 6.5.1 is cut along the boundary separating sectors
1 and n as shown in Figure 6.5.3.

It is much easier now to count the number of ways to colour the n sectors
of Figure 6.5.3 subject to the given conditions. The number of ways this
can be done is clearly

k(k — 1)(k = 1)- - -(k — 1)= k(k — 1)*~1,
T 1 T T

number of choices of sectors: 1 2 3 n
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Figure 6.5.3. °

These k(k — 1)"~! ways of colourings can be divided into two groups:
(1) those colourings in which sectors 1 and n receive different colours;
(2) those colourings in which sectors 1 and n receive same colours.

Observe that the colourings in group (1) are precisely the colourings
of the n sectors of Figure 6.5.1. On the other hand, there is a bijection
between the colourings in group (2) and the colourings of the (n—1) sectors
of Figure 6.5.4.

Figure 6.5.4

Thus, by (AP) and (BP), we have:
an +an_y = k(k—1)"? (6.5.1)

where n = 3,4,....

Finally, we solve the recurrence relation (6.5.1). The characteristic root
of a, +a,—1 =0is a = —1, and so

ag') = A(_l)” ’
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where A is a constant.
Since f(n) = k(k —1)"71, let
a?) = B(k—1)""1.
As a{P) satisfies (6.5.1), we have:
B(k—1)""'+B(k—1)""2 = k(k- 1)~}
ie., Bk(k —1)""% = k(k - 1)1

Thus B = k—1 and so a{) = (k—1)". Hence the general solution of (6.5.1)

is
an = al® + o)

=A-1)" + (k-1)".
Since az = k(k — 1)(k — 2), it follows that
k(k—1)(k-2)=—A+ (k—1)3,

and so A= (k- 1)3_k(k— 1)(k - 2)

= (k- 1)(k? — 2k + 1 — k? + 2k)
=k-1.
Consequently, the required solution is
an=(-1)"(k-1)+(k-1)"
foralln>3andk>3. g

Example 6.5.2. The n x n determinant a,, is defined for n > 1 by

p P—q 0 0 0 0
g p pr-q¢ O 0 0
0 ¢ p p—gq - 0 O
a, = 0 0 q P -+ 0 0
0 0 0 0 v p p—gq
0 0 0 0 e ¢ P

where p and ¢ are distinct nonzero constants. Find a recurrence relation
for (a,), and solve the recurrence relation.
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Note. In the following solution, we assume that the reader is familiar
with the cofactor expansion of a determinant.

Solution. By applying the cofactor expansion of a, along the first
row, it follows that

p p—q O 0 o0

g P p—gq 0 o

0 q P 0 0

an, =p|. . . . . . n—1
0 0 0 P p—4q
¥0 0 0 q p |
nrl

g p—q¢ O 0 0
0 p p—g 0 0
0 q ) e 0 0

-(p-9|. . N R
0 0 0 P p—gq
10 0 ¢ p |

n:I

Now by applying the cofactor expansion of the second determinant along
the first column, we have

an = pan-1 — (P — q)qan-2, (6.5.2)

which is the desired recurrence relation.
The characteristic equation of (6.5.2) is

2’ —pe+(p—q)g=0
and its roots are p — ¢ and gq.

Case 1. p—q # q.
In this case, as the roots are distinct, the general solution is

an = A(p-9q)" + Bq" 1)
To find A and B, we first evaluate a; and a,. Clearly,

a =p

and
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p P—¢
q p

(12=|

=p’—qlp—-9)=p"+4¢* - pag.

We define ag as the number such that ag, @, and a; satisfy the recurrence

relation (6.5.2). Thus
a; = pa; — (p — q)qao,
and so p® +¢® —pg = p* — (p — ¢)qa0,

which implies that
ag = 1.

Letting ag = 1 and a; = p in (1) gives

{144'3::1
A(p—q)+Bg=p.

Solving the system (2) yields
p—1q

A= 2 and B= ———.

P—2q P—2q

Note that p — 2¢ # 0 in this case. Hence the desired solution is

_ a\n+1 __ n+1
an = (P q) q .
P—2q

Case 2. p—q=gq.

In this case, ¢ is a root of multiplicity 2, and the general solution is

a, = (A+ Bn)¢" .

Since ap = 1 and a; = p, it follows that

{A =1
(A+B)g=p=2¢;
ie., A=B=1.

Thus an = (1+n)g"

is the required solution of (6.5.2) in this case.
We conclude that

=gl T=a"" if p £ 2q,
a, =

p—2q

(1+n)g" ifp=2¢. u

2)

©)
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6.6. A System of Linear Recurrence Relations

In the preceding three sections, we learned how to solve a single linear
recurrence relation for a given sequence (a,). In this section, we shall
proceed one step further to consider systems of linear recurrence relations
for two given sequences (a,) and (b,), that are of the form:

@ = pan—1+ qbn-l
{bn = rbn—l + san—l, (6.6.1)

where p,q,r and s are arbitrary constants.

Recall that the method of substitution is an easy and standard method
of solving “systems of equations”. This method can similarly be used to
solve systems of recurrence relations of the form (6.6.1).

Example 6.6.1. Solve the system of recurrence relations

a, +2a,_1—4b,_1 =0 (1)
bn +5a,-1 — 7bn-1 =0 (2)

given that ¢y =4 and b, = 1.
Solution. From (1),

1
bp_1 = Z(an +2a,_1) (3)

Substituting into (2) gives

1 1
Z(a,,+1 + 20,.) +5anp-1 — 7{Z(an + 2an—1)} =0

or apy1 — Hap +6ap,_1 = 0. (4)
The characteristic equation of (4) is
2 —5z+6=0

and its roots are 2 and 3.

Thus the general solution of (4) is

an = A2" + B3" (5)
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where A and B are constants.

Substituting into (3) gives

1
bn = Z(a,,.H + 2an)

= %(A2"+1 + B3"*1 4+ 242" + 2B3")
1

= (442" +5B3"). (6)

As a; =4 and b; = 1, we have

2A+3B=4
{2A+14—53=1. (™

Solving (7) gives
A=8 and B=-4.

Hence
a,=2"t3_4.3"
b, =2"t3 5.3

for n > 1, are the required solutions. g

We shall now see how a system of linear recurrence relations can be set
up to solve an IMO problem.

Example 6.6.2. (IMO, 1979/6) Let A and E be opposite vertices
of a regular octagon. A frog starts jumping at vertex A. From any vertex
of the octagon except E, it may jump to either of the two adjacent vertices.
When it reaches vertex E, the frog stops and stays there. Let a, be the
number of distinct paths of exactly n jumps ending at E. Prove that

a2n-1=0

and

Ggn = %{(2 +VI- 2= VD)™, n=1,23,....
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Figure 6.6.1.

Solution. The given regular octagon is shown in Figure 6.6.1.

Since the number of edges in any path joining A and E is even, it is im-
possible to reach E from A in an odd number of jumps. Thus as,_1 =0,
foralln > 1.

It is obvious that as = 0. Also, as ABCDE and AHGFE are the only
2 different paths of 4 jumps from A to E, we have a4 = 2.

To find a recurrence relation for as,, we introduce a new supplementary
sequence (b,) as follows: For each n > 1, let b, be the number of paths of
exactly n jumps from C (or G) to E.

Starting at A, there are 4 ways for the frog to move in the first 2 jumps,

namely,
A—-B—-A A—-H-A

A—-B—-C, A—-H-QG.
Thus, by definitions of (a,) and (b,),

azn = 2a2n_2 + 2b3,_3. (1)

On the other hand, starting at C, there are 3 ways for the frog to move
in the next 2 jumps if it does not stop at E, namely,

C—-B—-C, C—-D—-C, C—B—A.

Thus,
ban = 2ban_2 + a2n-2. (2)
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We shall now solve the system of linear recurrence relations (1) and (2).
From (1), )
b2(n—1) = 50211 — @2(n-1)- 3)
Substituting (3) into (2) gives

1
3%2(n+1) ~ G20 = G20 = 2a3(n-1) + a3(n-1)

or
ay(n+1) — 4a2q + 2a3(n-1) = 0. 4)
Let d, = az,. Then (4) may be written as
dn41 —4dy +2dp-1 = 0. )
The characteristic equation of (5) is
22 -4z 4+ 2= 0,
and its roots are 2 = v/2. Thus the general solution of (4) is
az = dp = A(2+V2)" + B(2 - V2)", (6)

for n > 1, where A and B are constants.

To find A and B, we use the initial conditions d;y = a3 = 0 and d; =
a4 = 2. We define dy to be the number such that do,d; and d; satisfy (5).
Thus

dy — 4dy + 2dy = 0,

and so 1
do = 5(4d1 —dg) = -1.

From (6) and the initial conditions that dg = —1 and d; = 0, it follows that

A+B=-1
{A(2+\/§)+B(2—\/§)=o, ™

Solving (7) gives

() = o-h(a)

Thus, by (6), the required solution is

az, = % {(2 +V2)r (2 - \/5)”'1}, forn>1. g
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6.7. The Method of Generating Functions

In Chapter 5, we introduced the concept of a generating function for a given
sequence and witnessed that, as a mathematical tool, generating functions
are very powerful in solving combinatorial problems. In this section, we
shall discuss how generating functions can be used also to help solve certain

recurrence relations. We note that the method of generating functions could

incorporate the initial conditions to find both as.") and as"’ simultaneously

when it is used to solve linear recurrence relations.
Example 6.7.1. Solve the recurrence relation
a, —2a,-1=2" (6.7.1)
given that ap = 1.

Solution. Let A(z) be the generating function for the sequence (a,).
Then

A(z) = ap + a1z + azz® + agz® 4+ -+ apz" + -
—2zA(z) = —2apz — 20, 2% — 20323 — ... — 2a,_12" — - -
By taking their sum, we have
(1 - 22)A(z) = ao + (a1 — 2ap)z + (az — 2a;)z + - - -
+(an — 2ap-1)z" +--- .
Since ap = 1 and the sequence (a,) satisfies (6.7.1), it follows that
(1-22)A(z) =142z +222% + .- + 2"z + ...

_ 1
T1-2z°
Thus s oo
1 r
and hence
a, = (n+1)2"7,
forn>0. g

As shown in the above solution, in applying the method of generating
functions to solve a recurrence relation for a sequence (a, ), we first form the
generating function A(z) for the sequence (a,). By using the given recur-
rence relation and initial conditions, we obtain A(z) through some algebraic
manipulations. Finally, the solution of recurrence relation is obtained by

taking a, = g(n) where g(n) is the coefficient of z" in the expansion of
A(z).



256 Section 6.7. The Method of Generating Functions

Example 6.7.2. Solve, by the method of generating function, the
recurrence relation
a, — 5a,-1 +6a,_3 =57, (6.7.2)

given that ap =0 and a; = 1.

Solution. Let A(z) be the generating function for the sequence (a,).
Then
A(z) = ap + a1z + azz? + agz® + agz* + - -
—5zA(z) = —5apz — 5a1z? — Sagz® — bagz? — - -
6z2A(z) = 6agz® + 6a;z3 + 6azz? + - --

and so

A(z)(1 -5z +62%) =z + D _(a; — 5ai_1 + 6a;_5)z’

i=2

00
=z+25":c"
=2
L (59
—z+l—5z
_ 2522 + z — 52
- 1-5z
2022+
T 1-5z

Thus,

2022 + = B c D
A=) (l-22)i-30) " 1-8s T1-2s T1-3s U

Az) =
It follows from (1) that .
20z2 + z = B(1—2z)(1 — 3z) + C(1—5z)(1 — 3z) + D(1 — 5z)(1 — 2z). (2)
Putting z = 0 in (2) gives
B+C+D=0. 3)

Putting z = 1 in (2) gives

5+ % =C(1- g)(l - g) = (—%)(—%)c.
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or

Putting z = { in (2) gives

0 1 2 2.1 -2
5 t3=D0~- —)(1 -3)=D(=3)3) =D
23
D = —? .
Thus, by (3), we have
25
= —'C —-D= F .
Hence,
5 1 23 1
A=) = ?( ) (1—2z> (1—39:)
25 o= ;. 22 ; ;
= By ey + 2 Y (o) - B Y Gy

t=0 i=0 =0
and so the required solution is

oo 2o B

6 3 2

forn>1 g

Finally, we use the method of generating functions to solve a system of
linear recurrence relations.

Example 6.7.3. Solve the system of recurrence relations

{ ap +2ap_1+4b,_1 =0 (673)

by —4an_1 —6bp_1 =0,

given that ag = 1 and b = 0.
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Solution. Let A(z) be the generating function for (a,) and B(z) the
generating function for (b,). Then

A(z) = 1 +4a1z  +az®  4azzd +---
B(z) = biz  +byz? b33+ .-
2zA(z) = 2z +2a12% +2axz® + -
4zB(z) = 4b1z?  +4byad 4 -
and so
(1 + 2z)A(z) + 42B(z) = 1+ (a1 + 2)z + (az + 2a; + 4b;)z?
+ (a3 + 2az + 4by)z® + - -
=1,
by the first recurrence relation of (6.7.3).
Also,
—4zA(z) = -4z —4dajz? —4axz® —4azz? -—...
—6zB(z) = —6byz2 —6byz® —6bgzt —...
and so
B(z) — 4z A(z) — 6zB(z) = (b1 — 4)z + (bz — 4a1 — 6b1)z?
+(b3—4a2—6b2)z3+~-- ,
ie.,

(1-6z)B(z) — 4zA(z) = 0,

by the second recurrence relation of (6.7.3). Thus we have

{ (1+ 2z)A(z) + 4zB(z) =/1

—4zA(z) + (1 — 6z)B(z) =0 M
Solving the system (1) for A(z) and B(z) gives
1—6z 4z
A(Z) = m and B(Z) = (1——_23?
Now,

A(z) = (1-62) Y _(r+1)(2z)"

r=0

00
and B(z) = 42y (r +1)(2z)".

r=0
Hence, by determining the coefficients of " in A(z) and B(z) respectively,
we obtain the desired solutions:

a, = (n+1)2" — 602"~ = 27(1 - 2n)
and by = 4n - 2771 = p2ntl,

foralln>1. g
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6.8. A Nonlinear Recurrence Relation and Catalan
Numbers

We begin with a famous combinatorial problem of dissecting a polygon
by means of nonintersecting diagonals into triangles, that was studied by
Euler and others about 200 years ago. A way of solving the problem leads
to an important class of nonlinear recurrence relations. These nonlinear
recurrence relations can be solved by the method of generating functions.

Example 6.8.1. A triangulation of an n-gon P,, n > 3, is a subdivi-
sion of P, into triangles by means of nonintersecting diagonals of P,. Let
agp = 1 and for n > 1, let a, be the number of different triangulations of an
(n + 2)-gon. Show that for n > 1,

Gn = ApGp-1 + @102 + @283 + - - + An—281 + an_100, (6.8.1)

and solve the recurrence relation.

Solution. It is obvious that a; = 1. For n = 2,3, the respective
triangulations of P4 and P5 are shown in Figure 6.8.1, which show that

a; =2 and a; =>5.

2 3 2 3
1 1 1 1
2@5 2@5 2@5 2@5
3 4 3 4 3 4 3 4

Figure 6.8.1.



260 Section 6.8. A Nonlinear Recurrence Relation and Catalan Numbers

To establish the recurrence relation (6.8.1), we form the (n+2)-gon P, 42
of Figure 6.8.2 and fix a triangulation of this P,42, where n > 2. (Note
that the recurrence relation (6.8.1) holds trivially when n = 1.) Choose
an arbitrary side, say [1,n + 2], which joins vertices 1 and n + 2 of P, 4.
Clearly, [1,n + 2] belongs to a unique triangle of this triangulation. Denote
the 3rd vertex of this triangle by r (r = 2,3,...,n+1), and the triangle by
A(1,n + 2,r) (see Figure 6.8.2). Observe that A(1,n + 2,r) divides P4,
into 2 smaller polygons:

the r-gon (1) and the (n+3 —r)-gon (2)

of Figure 6.8.2. By definition, the r-gon (1) can be triangulated in a,_»
ways while the (n +3 — r)-gon (2) in an41-, ways independently. Thus, by
(MP), the number of different triangulations of P, 4, in which A(1,n+2,r)
occurs is

Ar-28n41—r.

As the value of r ranges from 2 to n + 1, it follows by (AP) that

n4l
an = Z Ar-20n41-r,

r=%

. n—

1.e.

! ap = Zaka,._l_k, (6.8.1)

k=0

for alln > 1.

side [1,n + 2]

Figure 6.8.2.
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We shall now solve (6.8.1) by the method of generating functions.
Let A(z) = Y o> anz" be the generating function for (a,). Then

A(z) —ap = Za,.z = Z (Z aka,.-l_k) z"

n=1 n=1

= (agao)z + (agay + a1a0)z? + (agaz + ayay + azag)z® + - -
= (ao + 012 + 622 + a3z + - - )(aoz + a12% + apz® + - -)
= z(A(z))%.

Thus, as ag = 1,

z(A(z))? - A(z)+1=0.
Solving for A(z) yields
1+v1-4z
2z
1
=5 {1+(1—-4=)3 3}. (1)

A(z) =

The coefficient of " (n > 1) in (1 — 4z)% is

() = =000 -G on ey

n! {_4)7\

,1:1.3.5...(2n=3)

n!

= (=4 ()" (-1
(2n - 2)!
n2.4.6..-(2n - 2)
(2n — 2)!
nl2n-1.(n-1)!
2 (2n-2)!
“n(n-1)ln-1)!

_ 2 (2(,1_-11))'

Since a, > 1, it follows from (1) that

n

9"

Az) = 2i{1-(1;4z)%}

=m0 D)
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Hence, for n > 1,

_l 2 2n\ _ 1 2n
n =3 n+l\n/ n+1\n/’ .

Recall that the numbers ”+_1 (":'), called the Catalan numbers, was in-
troduced in Example 2.6.4 as the number of increasing mappings o : N, —
N,,—1 with the property that a(a) < a for each a in N,,. The above prob-
lem of dissecting an n-gon was first studied by Johann Andreas von Seguer
(1704-1777) and then independently by L. Euler (1707-1783). Some other
examples which give rise to these numbers are shown in Table 6.8.1. For
more examples, references and generalizations of these interesting numbers,
the reader may refer to Cohen [4], Breckenridge et.al. [B], Gardner [Ga),

Gould [Go], Guy [Gu], Hilton and Pedersen [HP] and Chu [C].

6.9. Oscillating Permutations and an Exponential
Generating Function

In this final section, we shall introduce another interesting problem studied
by the French combinatorist D. André (1840-1917) in 1879 (see André [Al,
A2] and also Honsberger [Hn], 69-75) on a special kind of permutations.
The notion of generating functions has just been used in Sections 7 and
8 to help solve certain recurrence relations. We shall see here how this
problem gives rise to a system of nonlinear recurrence relations and how
the notion of exponential generating functions can be used to solve the
recurrence relations.

Let S be a set of n natural numbers. A permutation ejez---e, of S is
said to be oscillating if the following condition is satisfied:

e1<ez>ez<es>es <

where
en-1> €, 1fnisodd
en—1 < e, ifniseven.

The length of a permutation ejes---e, of n numbers is defined to be
n. Table 6.9.1 shows all oscillating permutations of length n of N,
(=11,2,..,n}), for each n = 1,2,3,4,5.
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The numbers of increasing mappings o : {1,2,3} — {0.1,2

such that a(a) < a

2 2 2 X 2 2 X
1] 1] X 11 1] X X 1] X

o 1 2 3 o0 1 2 3 0 1 2 3 o 1 2 3 o

The number of ways of putting brackets in z,zoz3z

(((z172)73)z4) ((22(2273))74) ((172)(2374)) (22((2223)T4)) (T1(z2(7374)))

The number of sequences with 3 1’s and 3 (—1)’s

such that each partial sum is nonnegative
(1,1,1,-1,-1,-1), (1,1,-1,1,-1,-1), (1,1,-1,-1,1,-1),
(1,-1,1,1,-1,-1), (1,-1,1,-1,1,-1)

The number of rooted binary trees with 3 nodes

<A S N

The number of ways to pair off 6 points on a circle

by nonintersecting chords

1 1 1 1
2 6 2 6 2 6 2 6 2 6
3 5 3 5 3 5 3 5 3 5
4 4 4

Table 6.8.1.
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Length Oscillating Permutations No. of such permutations

1 1 1

2 12 1

3 132,231 2

4 1324,1423,2314,2413,3412 5

5 13254,14253,14352,15243, 16
15342,23154,24153,24351,
25143,25341,34152,34251,
35142,35241,45132,45231

Table 6.9.1

The problem that André considered is:

“What is the number of oscillating permutations of Ny, for each n > 17"

Before presenting André’s solution, we have the following simple but

useful observation.

Observation. Let S = {s1,52,...,5,} be any set of n distinct natural
numbers. The number of oscillating permutations of S is the same as the

number of oscillating permutations of N,.

This observation simply says that as far as the number of oscillating

permutations of S is concerned, only the size |S| of S matters and the
magnitudes of numbers in S are not important. The observation can easily
be verified by establishing a bijection between the oscillating permutations
of S and those of N,,. For instance, if S = {3,5,6,9}, then from the

correspondence:

321,52 6~3, 9«4

one can establish the following bijection:

3659 «— 1324
3956 « 1423
5639 «— 2314
5936 — 2413

6935 — 3412.
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For convenience, given an oscillating permutation ejes - - - e,, we underline
e; if e; is smaller than its adjacent number (or numbers). Thus, we have

1324
35142
241635
2715463 ;.

Clearly, with this convention, an oscillating permutation e;es - - - €5, ends up
with an underlined e, iff n is odd.

According to the parity of n, André introduced the following two se-
quences (a,) and (b,): For n > 0,

o = {the no. of oscillating permutations of N,, if n is odd,
n =

0 if n is even,
0 if n is odd,
b, = { 1 ifn=0,
the no. of oscillating permutations of N, if n > 2 is even.

It follows readily that for each n > 1, a, + b, counts the number of oscil-
lating permutations of N,;.

Claim 1. For odd n,
it Y |
a, = Z ( k )aka,._l_k. (6.9.1)
k=0

Proof. Let ejezez - -en—1€n (n 0dd) be an oscillating permutation
of N, and let ex41 = n. Clearly, ex4+1(= n) splits the permutation into 2
oscillating permutations of odd length k and n — 1 — k respectively, where
k=1,3,5,..,n—2:

(:4328_3_' ° ek—le_klek+1 (6k+2 . 'en—le_n)

odd odd
(left) (right)

Since there are

(i) (*;?) ways of choosing k numbers from N,_; (to be arranged on
the left),
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(ii) ax ways to form an oscillating permutation of odd length k on the
left (see observation),  and

(iii) an—1-& ways to form oscillating permutations of odd length n—1—k
on the right,

and since the value of k ranges from 1,3, 5, ... to n — 2, we have

_(n-1 + n—1 gaa P -1
Gn = 1 a10n-2 3 30n—4 n—29 Gn-201.

As a,, = 0 if n is even, it follows that

n-1
n—1
an = 2 k Ak Gn—1-k,
k=0
as required. g

Claim 2. For even n,
“n-1
b= ( . )akb -k (6.9.2)

Proof. Let eiez---€xek+1€k42  €n—16n (n even) be an oscillating
permutation of N, where ex41 = n. Again, ex41(= n) splits the per-
mutation into an oscillating permutation of odd length k on the left and
an oscillating permutation of even length n — 1 — k on the right, where
k=1,3,5,..,n—1:

(erezes- - €k-1€k) ek+1 (€k42€k+3 **En-1€n)

o&g 6}7&1
(left) (right)

Since there are
(i) ;') ways of choosing k numbers from N,_1,

(ii) ax ways to form an oscillating permutation of odd length k on the
left, and

(iii) bp—1-& ways to form oscillating permutations of even length n—1—k
on the right,
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it follows similarly that

n-1
b= g ) %kbn-1-k,

as desired. g

We are now ready to use the notion of exponential generating function
to solve the recurrence relations (6.9.1) and (6.9.2). First, let

o k
A(z) = Z ag :—|
k=0
be the exponential generating function for the sequence (a,).
Claim 3. 1 + A(z)? = A'(z).
Proof. Indeed,

1+ A(z)?
T 1)2 1:3 2
= 1+(ao+a11—!+a2§+a3§+...)
apa aa asa
= 1+ aoao + (aoa1 + aiao)z + ( glz + 11|1: + ;10) ’
“003 G162 | G20 a3ao
+Gr T tam o e

and the coefficient of = (_IF (n > 2) in this expansion is

o (5 i)

-1 n—1)!
= Z k'(’l(l— llk)laka"—l k

n-1
=3 (" )oe
= Qp,

by (6.9.1) and that a, = 0 if n is even.
On the other hand,

2 3

A'(z)=a1+a2 +a32'+a43|+ .
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and the coefficient of Z— 1 7 (n > 2) in this expansion is a,,. Further, the
constant term in 1 + A(z)? is 1 + apap = 1, which is the same as a; = 1,
the constant term in A’(z). We thus conclude that

1+ A(z)? = A(2).

Let B(z) = Yreo bk% be the exponential generating function for the
sequence (by).

Claim 4. A(z)B(z) = B'(z).

Proof. Indeed,

A(z)B(z)
z3 e
= (a0 +a, 1,+02 T +033, )(bo+b1 +bz +bs +--9)
b ab aob b azb
_aobo+(001 10) +( 02 6;1'1: 20) +.

and the coefficient of (%IT (n > 2) in this expansion is

bn— ayb,— n—10
("“)’((ano D Tt D)

= Z ("' l)akb 1o

k=0

= bn,

by (6.9.2) and the definition that ax—y = bx = 0 if k is odd.
On the other hand,

2

B'(z) =b; + b2 2'

1,+ba

and the coefficient of (%IV (n > 2) in this expansion is b,
Further, the constant terms in A(z)B(z) and B’'(z) are, respectively,
apbp = 0 and b; = 0, which are equal. We thus conclude that

A(z)B(z) = B'(z). «n
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Our final task is to determine the generating functions A(z) and B(z)
from Claim 3 and Claim 4.

By Claim 3, we have
A'(z)
T+ A(z )2da:_/dz
and so tan"! A(z) = z + C.
When z = 0, C = tan"! A(0) = tan"!(ap) = tan"1 0 = 0. Thus

tan~' A(z) =z
and A(z) = tanz (1)
By Claim 4 and (1), we have
B'(z) _ _
Bla) ~ A(z) = tanz
and so B(2)
T
B(2) dz = /ta.n zdz
or
In B(z) = In(secz) + C.
When z = 0,
C =InB(0) - ln(sec 0)
_LBO) _ b
T sec0
=Inl1=0.
Thus In B(z) = In(sec ) and so
B(z) =secz. (2)

Consequently, the desired number of oscillating permutations of Ny, is a,, +
by, which is the coefficient of f‘—',' in tanz + sec z.

The first 11 terms of the series expansion of tanz and sec z are given
below:

2! 28 z5 27 9
tanz = Tl —+2. T — 416 = — 4272 o — + 7936 - 9'

22 zt 26 z8 1o
secz = 1+ o +5- +61 o + 1385 - T — + 50521 - 10|

and the first 11 terms of a, + b, are
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521.
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Exercise 6
1. Solve

ap = 3apn-1 — 2a,-32,

given that ap = 2 and a; = 3.

2. Solve
an —6ap-1 +9a,-2 =0,

given that ag = 2 and a; = 3.

3. Solve
1
an = E(an—l + an—2)s

given that ag = 0 and a; = 1.

4. Solve
a, —4an_1 +4a,_2=0,
given that ap = --;— and a; = 1.
5. Solve

2a, = an_1+2ap_2 — an-3s,
given that ag = 0, a; = 1 and a3 = 2.

6. Solve
ap, —6a,_; +1la,_3 — 6a,_3 = 0:

given that ap = %, a;j=1and a; = 2.

7. Solve
ay = —an-1 + 16a,-2 — 20a,_3,

given that ag =0, a; = 1 and a; = —1.

8. Find the general solution of the recurrence relation
ap +ap-1 —3ay-2 —5an_3—2a,_4 = 0.

9. Solve 1

an = Ean-l -3,

given that ap = 2(3 + v/3).



10.

11.

12.

13.

14.

15.

16.

17.
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Solve
a, —3a,_1=3-2" —4n,
given that a; = 2.

Solve
ap, —ap_1 =4n—1,
given that ag = 1.

Solve
Gn = pan-1+4q,

given that ag = r, where p, ¢ and r are constants.

Let (a,) be a sequence of numbers such that

(i) ao=1,a; =2 and

(ii) the sequence (an — j5@n—_1) is a geometric progression with common
ratio %

Find a general formula for a,, n > 0.

Solve
af,a,._.l =101,

given that ag = 1 and a,, > 0 for all n.

A sequence (a,) of positive numbers satisfies

an = 2\/ an-1

with the initial condition ag = 25. Show that lim a, = 4.
n—00

A sequence (a,) of numbers satisfies

2
( an ) _ Gn
Apn-1 Ap—2

with the initial conditions ay = % and a; = 1. Solve the recurrence
relation.

Solve
an + 3an_1 = 4n% — 2m + 2",

given that ag = 1.
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18.

19.

20.

21.

22.

23.

24.

25.

Ezercise 6
Solve
ap — 20,1+ 20,2 =0,
given that ap = 1 and a; = 2.

Solve
ap —4an_1 +4a,_2 =2",

given that ag = 0 and a, = 3.

Solve

ap — Gp-1— 2apn_2 = 4n,
given that ap = —4 and a; = -5.
Solve

an+an-1—2ap-2 = 2n—2,
given that ag = a; = 0.
Solve

ap —3ap_1+2a,_2=2",
given that ap = 0 and a; = 5.
Solve

an + 5apn_1 + 6a,_o = 302,
given that ap = 0 and a; = 1.

Let (an) be a sequence of numbers satisfying the recurrence relation
Pan +gqapn-1+ran-2 =0

with the initial conditions a9 = s and a; = t, where p,q,r,s,t are
constants such that p+ g+ =0, p # 0 and s # ¢t. Solve the
recurrence relation.

Let (an) be a sequence of numbers satisfying the recurrence relation

_Pon-1+4¢

an =
Tap_1+s

where p, ¢, and s are constants with r # 0.

(i) Show that
qr —ps
— (1)

ran+s=p+s+ .
Tap-1+ 8
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27.

28.

29.

30.

31.
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(ii) By the substitution ra, + s = b—;:i, show that (1) can be reduced
to the second order linear homogeneous recurrence relation for (by):

bnt1 — (p+ 8)bn + (ps — gr)bp—1 = 0.

Solve
an = 3an-1
T 2ap-1+1’
given that a, = ;1;.
Solve L S,y +1
" ap-1+3 ’

given that a, = 5.
A sequence (a,,) of numbers satisfies the condition
(2-an)any1 =1, n>1
Find lim a,.
n =00
For n € N, recall that D,, is the number of derangements of the set N,,.
Prove by a combinatorial argument that

D, = (n—1)(Dp-1 + Dp-32).

For n € N, let a,, denote the number of ternary sequences of length n
in which no two 0’s are adjacent. Find a recurrence relation for (an)
and solve the recurrence relation.

Let Cy,C1,Cs, ... be the sequence of circles in the Cartesian plane de-

fined as follows:

(1) Cp is the circle 2% + y% =1,

(2) forn=0,1,2,..., the circle Cp41 lies in the upper half-plane and is
tangent to C,, as well as to both branches of the hyperbola 22 —y2 =
1.

Let a, be the radius of C,.
(i) Show that @, = 6an—y — an—3, n>2.

(ii) Deduce from (i) that a, is an integer and
1
an=3[3+ 2V2)" + (3 - 2v2)").

(Proposed by B. A. Reznick, see Amer. Math. Monthly, 96 (1989),
262.)
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32.

33.

34.

35.

36.

Ezercise 6

The n x n determinant a,, is defined by

p+a pg 0 0 0 0

1 p+qg pg 0 0 0

0 1 p+qg pg 0 0

a, = 0 0 1 p+g 0 0
0 0 0 0 ... p+q pg

0 0 0 0o ... 1 p+gq

where p and ¢ are nonzero constants. Find a recurrence relation for
(an), and solve the recurrence relation.

Consider the following n x n determinant:

pg+1 q 0 0 0
p pq+1 q 0 0
0 p - pg+1 q 0
a,=| O 0 P pg+1 0
0 0 0 0 q
0 0 0 0 .. Pg+1

where p and ¢ are nonzero constants. Find a recurrence relation for
(an), and solve the recurrence relation.

Given n € N, find the number of n-digit positive integers which can be
formed from 1, 2, 3,4 such that 1 and 2 are not adjacent.

A 2 x n rectangle (n € N) is to be paved with 1 x 2 identical blocks
and 2 x 2 identical blocks. Let a,, denote the number of ways that can
be done. Find a recurrence relation for (a,), and solve the recurrence
relation.

For n € N, let a,, denote the number of ways to pave a 3 x n rectangle
ABCD with 1 x 2 identical dominoes. Clearly, a, = 0 if n is odd. Show
that

= 5= {(VI+ D@+ VEF +(VB- D= VA },

where r € N. (Proposed by I. Tomescu, see Amer. Math. Monthly, 81
(1974), 522-523.)



37.

38.

39.

40.

41.

42.

Chapter 6. Recurrence Relations 275

Solve the system of recurrence relations:

Gn41 = Ap — bn
bn-l-l = ap + 3by,,

given that ag = —1 and b, = 5.

Solve the system of recurrence relations:

an+2an_1+4bp_1=0
b, —4a,_1 —6b,_1 =0,

given that ap = 1 and bp = 0.

Solve the system of recurrence relations:

10a, = 9a,-1 — 2b, -1
5bp = —an_1 + 3bs_1,

given that ag = 4 and b, = 3.

Solve the system of recurrence relations:

da, —2a,_1 —bp_1=0
3bp —an_1 — 2bp1 = 0,

given that ap = 2 and by = —1.

Let (a,) and (b,) be two sequences of positive numbers satisfying the
recurrence relations: )
an = an—lbn
bz = anbn_l
with the initial conditions ag = % and by = 64. Show that
lim a, = lim b,,
n— 00 n—0o

and find the common limit.

For n € N*, let a,,b,,, ¢, and d,, denote the numbers of binary sequences
of length n satisfying the respective conditions:

Number of 0’s Number of 1’s
a, even even
b, even odd
Cn odd even
d, odd odd
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(i) Show that
ap =bpo1+cn-1,

bp =an-1+da1=c¢n,
dn = bn1+Cn-1.

(ii) Let A(z), B(z), C(z) and D(z) be, respectively, the generating func-
tions of the sequences (a,), (b,), (¢n) and (d,). Show that

1- 222
AC) = Tg
T
B(z) = C(@) = 1=,
222
D) = 14

(iii) Deduce from (ii) that

a, = (-2"2+2"7% (n2 1),
bp=cn = —(=2)""242""% (n>0),
do = (=2)""242""% (n>1).

43. Three given sequences (a,),(bn) and (c,) satisfy the following recur-
rence relations:

1
An4l = -2'(1)” +cn — an),

a1 = 3(cn + an = bu),
and
Cn4l = %(an + by — Cn)’
with the initial conditions a9 = p, bg = ¢ and ¢o = r, where p, ¢, r are
positive constants.
(i) Show that a, = 3(p+q+7)(3)" +(-1)"3(2p—g—r) foralln > 0.
(ii) Deduce that if a, > 0, b, > 0 and ¢, > 0 for all n > 0, then
p=gq=r.
44. For n € N, let F,, denote the nth Fibonacci number. Thus

Fi=1, F,=1, F3=2, F4=3, F;=5, Fs¢=8, ...
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and by Example 6.3.1,

Fn+2 =F, +Fn+1

and
Fn=%{(1+2s/5)n_(1—2s/5),.}.
Show that
6) YOF. = Fasa =1
r=1
(ii) iFZr = Fonp1—1;
r=1

n
(iii) ZFZr-l = Fap;

r=1

(iv) i(—l)"“F, =(-1)""F,_; +1

r=1

45. Show that for m,n € N with n > 2,
() Fm4n = FnFn-1+ Fny1Fn;
@ (1 0) =% o)
(ili) Fp41Fn-1— F2=(-1)%
(iv) F2,, =4F,Foy+F2_;, n>3;
(v) (Fn, Fn41) = 1, where (a,b) denotes the HCF of a and b.

Remark. In general, (Fin, F) = Fy n). Also, Fiy|Fy iff m|n.

46. Show that for n > 2
(i) F3+F2_) = Fan-y;
(ii) F3+1 = F}_y = Fon;
(i) F3yy + F3— Fo_y = Fan.
47. Show that

n
(i) EFz =FoFoy,

r=1

277
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48

49.

50.

51.

52.

53.

54.

2n-1
(ii) Z FFy = F22m

r=1

2n
(i) Y FrFry1 = Fiopy — 1.

r=1

. Show that for n € N*,

13,
Fn+1=2( r )

r=0

Show that for m,n € N,

Ld n
Z (7‘) Fm+r = Im42n.

r=0

Show that
. F n \/g - 1
lim

= 0.618.

n—00 Fn+l

Note. The constant 3@2‘—1 is called the golden number.

Beginning with a pair of baby rabbits, and assuming that each pair
gives birth to a new pair each month starting from the 2nd month of its
life, find the number a,, of pairs of rabbits at the end of the nth month.
(Fibonacci, Liber Abaci, 1202.)

Show that for n € N*,

1 -1 0 0 0 0
1 1 -1 0 0 o
0 1 1 -1 0 o0
Fop1 = : o Do
0 0 0 0 1 -1
0 0 0 0 1 1

A man wishes to climb an n-step staircase. Let a,, denote the number
of ways that this can be done if in each step he can cover either one
step or two steps. Find a recurrence relation for (ay,).

Given n € N, find the number of binary sequences of length n in which
no two 0’s are adjacent.



55.

56.

57.

58.

59.

60.

61.
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For n € N with n > 2, let a, denote the number of ways to express n
as a sum of positive integers greater than 1, taking order into account.

Find a recurrence relation for (a,) and determine the value of a,.
Find the number of subsets of {1,2,...,n}, where n € N, that contain

no consecutive integers. Express your answer in terms of a Fibonacci
number.

Prove that

Z (2]-—n-1) (0 4)”F

(Proposed by S. Rabinowitz, see Cruz Mathematicorum, 10 (1984),
269.)

Call an ordered pair (S, T') of subsets of {1,2,...,n} admissibleif s > |T|
for each s € S, and t > |S| for each ¢t € T. How many admissible

ordered pairs of subsets of {1,2,...,10} are there? Prove your answer.
(Putnam, 1990)

For each n € N, let a,, denote the number of natural numbers N satis-
fying the following conditions: the sum of the digits of N is n and each
digit of N is taken from {1,3,4}. Show that as, is a perfect square for
each n =1,2,.... (Chinese Math. Competition, 1991)

Find a recurrence relation for a,, the number of ways to place
parentheses to indicate the order of multiplication of the n numbers
21Z223...%,, Where n € N.

For n € N, let b, denote the number of sequences of 2n terms:

21,22,.-+,%2n,

where each z; is either 1 or —1 such that

()X 2,=0 and

(2) XF_, 2z >0foreach k=1,2,...,2n - 1.

(i) Find b, forn =1,2,3.

(ii) Establish a bijection between the set of all sequences of 2n terms

as defined above and the set of all parenthesized expressions of the
n + 1 numbers 2122 ...ZpTpn41-
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62. For n € N, let a, denote the number of ways to pair off 2n distinct
points on the circumference of a circle by n nonintersecting chords.
Find a recurrence relation for (a,).

63. Let p(z1,22,...,2,) be a polynomial in n variables with constant term
0, and let #(p) denote the number of distinct terms in p after terms with
like exponents have been collected. Thus for example #((z1+2z2)%) = 6.

Find a formula for #(g,) where
n = 21(21 + 22)(31 +zo+23)-- '(31 +-o+2,).

(Proposed by J. O. Shallit, see Amer. Math. Monthly, 93\(1986), 217-
218.)

64. Find the total number of ways of arranging in a row the 2n integers
a1,a3,...,05,b01,bs,...,b, with the restriction that for each ¢, a; pre-
cede b;, a; precede a;4+1 and b; precede b;11. (Proposed by E. Just, see
Amer. Math. Monthly, 76 (1969), 419-420.)

65. Mr. Chen and Mr. Lim are the two candidates taking part in an
election. Assume that Mr. Chen receives m votes and Mr. Lim receives
n votes, where m,n € N with m > n. Find the number of ways that
the ballots can be arranged in such a way that when they are counted,
one at a time, the number of votes for Mr. Chen is always more than
that for Mr. Lim.

66. For n € N, let a,, denote the number of mappings f : N,, — N,, such
that if j € f(N,), then i € f(N,,) for all ¢ with 1 <7< j.
(i) Find the values of a,,a; and a3 by listing all such mappings f.

(ii) Show that
= (")a
n = n—-k-
k=1 k

(iii) Let A(z) be the exponential generating function for (a,), where

ag = 1. Show that )

A(z) = T

(iv) Deduce that

[o ] rn
@ =2 g

r=0
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67. Define Sp to be 1. For n > 1, let S, be the number of n X n matrices
whose elements are nonnegative integers with the property that a;; =
aj; (i,j=1,2,...,n)and where }_;_; a;; =1, (j=1,2,...,n). Prove
(a') Sn+l =S, + nSn—l;

-] " 2
(b) Z:(’Snm = Cz+ 2,
n=

(Putnam, 1967)

68. A sequence (a,) of numbers satisfies the following conditions:
(1) ay=1% and
2) ay+az+---+a, =n%a,, n>1.
Determine the value of a,.

69. What is the sum of the greatest odd divisors of the integers
1,2,3,...,2", where n € N? (West German Olympiad, 1982)
(Hint: Let a,, be the sum of the greatest odd divisors of 1,2,3,...,2".
Show that a, = a,-1 +4""1.)

70. Let d,, be the determinant of the n X n matrix in which the element in
the ith row and the jth column is the absolute value of the difference
of ¢ and j. Show that

d, = (-1)""Y(n-1)2""2
(Putnam, 1969)
71. A sequence (a,) of natural numbers is defined by a; = 1, a2 = 3 and
a, =(n+1)a,_; — na,_, (n>2).
Find all values of n such that 11|a,.

72. A sequence (a,) of positive numbers is defined by

1
an = '1‘6 (1 +4an-1 + / 1+ 240»-1)

with ap = 1. Find a general formula for a,,.

73. A sequence (a,) of numbers is defined by

2a,, = 3an—1 + \’ 5a’2‘_1 +4 (n 2 1)

with ag = 0. Show that for all m >1, 1992 fasn41-
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74. Solve the recurrence relation
na, = (n—2)ap-1 + (n+1),

given that ap = 0.

75. Solve the recurrence relation
n(n — 1)a, — (n — 2)%a,-2 =0,

given that ap = 0 and a; = 1.

76. A sequence (a,) of numbers satisfies the recurrence relation

(an - an—l)f(an—l) + g(an—l) =0

with the initial condition ay = 2, where
f(z) = 3(z - 1) and g(z) = (z - 1)%.

Solve the recurrence relation.

77. A sequence (a,) of numbers satisfies the recurrence relation
n(n—1)a, = (n—1)(n — 2)a,—1 — (n — 3)an—2

with the initial conditions ag =1 and a; = 2.

Find the value of
1992

Yo

a .
k=0 k+1

78. Lét a(n) be the number of representations of the positive integer n as
the sums of 1’s and 2’s taking order into account. For example, since

4=1414+2=1424+1=241+1
=2+4+2=141+41+41,

then a(4) = 5. Let b(n) be the number of representations of n as the sum
of integers greater than 1, again taking order into account and counting
the summand n. For example, since 6 = 442 =2+44=3+4+3 =2+2+2,
we have b(6) = 5. Show that for each.n,a(n) = b(n+2). (Putnam, 1957)



79.

80.

81.

82.

83.

84.
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Show that the sum of the first n terms in the binomial expansion of
(2—1)"" is 1, where n € N. (Putnam, 1967)

Prove that there exists a unique function f from the set Rt of positive
real numbers to R* such that

f(f(2)) = 6z — f(=)
and f(z) > 0 for all £ > 0. (Putnam, 1988)
Let Ty =2, Ty =3, T2 =6, and forn > 3,
Tpn=(n+4)Tho1 —4nT,_2 + (4n — 8)Ty_3.
The first few terms are
2,3,6,14,40,152,784, 5168, 40576.

Find, with proof, a formula for T, of the form T,, = A,, + B,,, where
(A,) and (B,) are well-known sequences. (Putnam, 1990)
Let {a,} and {b,} denote two sequences of integers defined as follows:
a =1, a1 =1, ap =ap-1+2a,-2 (n 2> 2))
bo=1, by =7, by =2b,—1+3bp—2 (n >2).
Thus, the first few terms of the sequences are:
a:1,1,3,5,11,21,...
b:1,7,17,55,161,487, ...

Prove that, except for the “1”, there is no term which occurs in both
sequences. (USA MO, 1973)

The sequence {z,} is defined as follows: z; = 2, £ = 3, and
Tam41 = Tam + Tam—-1, M 21
Tom = Tom-1+ 2Tam-2, M2 2.
Determine z, (as a function of n). (Austrian MO, 1983)

Determine the number of all sequences (z1,%3,...,%,), With z; €
{a,b,c} for i = 1,2,...,n that satisfy z; = z, = a and z; # zip1
fori=1,2,...,n— 1. (18th Austrian MO)
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85.

86.

87.

88.

89.

90.

The sequence z1, T3, ... is defined by the equalities £; = £ = 1 and
Tpy2=14zp49 ~2, -4, n2>1
Prove that each number of the given sequence is a perfect square. (Bul-

garian MO, 1987)

How many words with n digits can be formed from the alphabet
{0,1,2,3,4}, if adjacent digits must differ by exactly one? (West Ger-
many, 1987)

The sequence (a,,) of integers is defined by

1 aZ 1
—5 <On41- P < 3
with a; = 2 and a; = 7. Show that a, is odd for all values of n > 2.
(British MO, 1988)

In the network illustrated by the figure below, where there are n adjacent
squares, what is the number of paths (not necessarily shortest) from A
to B which do not pass through any intersection twice?

B

A 1 2 3 n

(Proposed by P. Andrews and E. T. H. Wang, see CRUX Mathematico-
rum, 14 (1988), 62-64.)

Let a; =1 and an41 = @, + |/@,) for n € N. Show that a, is a square
iff n = 2% 4+ k —2 for some k € N. (Proposed by T. C. Brown, see Amer.
Math. Monthly, 85 (1978), 52-53.)

Determine all pairs (h, s) of positive integers with the following property:
If one draws h horizontal lines and another s lines which satisfy

(i) they are not horizontal,

(ii) no two of them are parallel,

(iii) no three of the h + s lines are concurrent,

then the number of regions formed by these h+ s lines is 1992. (APMO,
1992)
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91. Show that .
r—
Strm)= Y (’;1)5(1:,11-1),
k=n-1
where r > n > 2.
92. Let Bo =1 and for r € N, let B, = Y _, S(r,n) denote the rth Bell
number (see Section 1.7). Show that
o
BT = Z ( k ),Bk)
k=0
where r > 1.

93. Two sequences P(m,n) and Q(m,n) are defined as follows (m,n are
integers). P(m,0) =1 for m > 0, P(0,n) =0 for n > 1, P(m,n) =0
for m,n < 0. P(m,n) = 3°7_, P(m —1,§) for m > 1. Q(m,n) =
P(m-1,n)+ P(m—1,n—1)+ P(m — 1,n — 2) for m > 1. Express
Q(m,n) in terms of m and n for m > 1. (Proposed by L. Kuipers, see
Amer. Math. Monthly, 76 (1969), 97-98.)

94. For n,k € N, let Sg(n) = 3_7_, j* (see Problem 2.85). Show that

=1
(i) Sk(n) =n*+! - Z% (r) Sr41(n—1) for n > 2,
r=
k=2 o
(i) (k+1)Sp(n) = (n+ 1) — (n + 1)F - Z (r) Sr41(n).
r=0
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Answers to Exercises

Exercise 1

1.(i) 45 1.(ii) 235

2.(iii) 7!- (§) - 5!

3.(i) (m + n)!

3.(iii) (m + 1)!n!

4.(i) P° 4.(ii) P§ - P}

6. 1232 7.(n+1) -1
11.(i) 8 11.(ii) 16
15.0-Q) (5)  15.Gi) () (5) -9

17. (§) - 5! = 2400

2.(i) 12! 2.(ii) 8!5!
2.(iv) 8!-120

3.(ii) n!Pnt!

3.(iv) (m+n—-1)'x2

5. (2P24)(20")

8. 1- oy 10. 1271
11.(iii) 108

16. 7!(3)
18. () - (10m%  19.7!x 10

20.()) () (5) + Q) (5) + G () or (7) - (7) by (CP)

20.3ii) 7{ () - (P}

~ 21 (™)

22. () (3)

23. () (N (Z) + GO G D) + G (E) 24. {5

25.(i) ( )(3)

25.(iii) (3)(}) (5)

26.(i) (})

26.(iii) (57) — (5) -2*
28.(i) 675 28.(ii) 115
30. 11754 31. 2844
33.(i) 13 33.(ii) 40 -

25.(ii) (5)(5)

25.(iv) (¥) - ) ()
26.(ii) () - 2%

26.(iv) (3) (%) - 2%

29.(1) 96 29.(ii) 445
32. 179900
33.(iii) 256 34. 2(";9

289
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35.(i) 10! 35.(ii) 5!P§ 35.(iii) 65! 35.(iv) 8! x 2
38.r=5 43. ok 44. 57 45. 770

46. 560 47.(i) 72nd position 47.(ii) 51342
48. 1156th, 1375th 49. 141 and 161

50. (%), (3) 51.(i) 41° 51.(ii) 4 - 3°
52. (r1+ 1)(re+1)---(rn +1)

55. (1279 + (417 6. () 6!

57.3-() 60 58.() (%) 58.) () +3() +30Q +©)
59.(i) 61° 59.(ii) G2 59.(iii) (V) 59.(iv) (
60. ("¢ D-1) 61.2. % 62. 42 - 9! 63. 11!- 825
64. Z(17) 65.(i) (%) 65.(i) () - (5)

66.(i) () 66.(ii) (3) - (%) 66. (iii) )
67. (%) 8. (N)+(N+() 69. 3> ((-247)
70. 36 .G+ GE) 72. ;:(P+;-1)
73. ("t 74. (073 75. () -1

76.(1) 2° —1  76.(ii) 381 78.r=n+2m

9.0) ) TG () 79.Gi) (5) +2()

79.(iv) (3) 80. (1) .n!  8lL.(a)(i) m"  81.(a)(ii) P"
81.(b) (T) 81.(c) m!S(n,m)

88. If n = p{'p?---pp* is the prime factorization of n, then the re-
quired number is (20 + 1)(2a2 + 1) - - - (201 + 1).

89.(i) 3(%%) + (664)° 89.(if) (*3°) + (498)% + 3 - 498 - (*3°)
90. 5 91. ("~(m-D-1) 93. 448
94. 106 95. 25 96. 141 97. 560

98.(i) 300 98.(ii) 600 99. 634 100. 840
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101. 23 102. 2]
105. : (13 109. n=0,1 (mod 4)
114. (c — 1)(™72)

103. (n,m) = (2,3), (3,6), (4, 10)
112. 315
115. 4

Exercise 2

1.27-1 2. (>

3.(1) Tico (7)  3.(1) 2"

4. 968 5. 504

7. (") +97-98- (%) +97- ('Y
9.(i) 21 9.(ii) 45

12. H(n,r) = Z0t1

14. (1), () - (20
53.(i) (';;) -p!-S(n,p)
57.35 58. 981

61. 166 72.n+1

3.(iii) is,—m (7)

6.2 +55) + () () = 1554
s () + (1Y)
11, (")

13. A(n) = ("F?)

23. m! (™10

53.(i1) Sy, (777)S(n, k) - ¥
59. 816 60. 704

75. 2n-1

80. Write n = 2% . r, where r > 1 is odd. Then the ged is 2F+1.

82. 5"_-T(t""1) 86. 2"+% — 2
91.(i) 9 (%) = 23343682140

+b 1
95. ;}3(’,;')

89. 2"t _ 2 _92p

fat+b=1
ifat+b#1

97. 2¢(™ ;")

Exercise 4

1.37 2(b) 229

3. E(0)=27,E(1)=53,E(2) =

32, E(3) =

8, E(4)

= 0. # of primes = 30
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4. 2301 5. 73001 6.(i) 9883 6.(ii) 8921

8. 485 9. Y or o (-1 (M) {(n-7)1)? 10. 36

11. 27720 — 2044 + 92 — 6 = 25762 12.(i) 1314 12.(ii) 174
13. () -33) -4() -4 +3() +3() 14. 28

15. () = (3) —2() 16. (3) —-3(3) - (3) +3(G) +3
19. 0o (=1)727 (%) (2n — 7)! 20.(i) ¢

20.(ii) 5 [§)* (Cioo(-1) ()2(22 - 1))

20.(i) § T4 % [8)"7 (S0, -0 () (9% e - i)
20.(iv) § Sloo & [2552]"7 (SL (-0 ) (92 (e - 1))
21.(a) (07} 22.(a) - = (3™ 23.(a) n+1
24.(i) A% — 4)3 + 502 — 2) 24.(ii) A* — 5A3 4 8A% — 4)
24.(l) A -15-(A-1)

25. (-1 48 T (-1 ety

28.(1) Co = L0 (-1 ("7 1) (n —i)!

29. Dy - D 30.(1) (m!)?  30.(ii) m - (m!)?

30.(iif) m! - {ioo(=1)'() - (m +r — i)}

39.(1) <p(100) = 40, <p(300) = 80 45. No 53. 85657
17-20'®—15.-204 22.263! —36.267
54, (120 -15207) 55, (22263626 )

663

57. m1989 _ 663 _ ;153 _ 117 4 081 4 1039 4 9 3

60. (—1)P+e 63. 217

Exercise 5

1. (%) 2. (5) -40), (5)-4(3)+6¢)
4. (z +2?)(1 —2)~* 5. T
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8.(3)—-3(;) +3=6 9. (5) - (%)
10. (>%F%) - 3("f) 11. 68
12.(i) z3(1 — )-8 12.(ii) z*(1 - z)~°

13. z19(1 — 27)(1 — 2°)(1 — 2'1)(1 — &) 3,
as=(3) - (3) - () -G+ +1

14. (3) —4(3) +6(3) 15. (5) - (¥)

16.(i) 22(1 + z + 22 + 2%)(1 — )~ '

16.(ii) {(1 - z)(1 — 22)(1 — 23)(1 — 25)(1 — 28)} 1

16.(iii) (1 + 2%)(1 + z19)(1 + z'5)

16.(iv) [Tizo(1 +2%*4) 16.(v) [T, (1 + 2%)

16.(vi) 25(1 - 2°)°(1 — 2)~° 17. (*%7) — 3("Y)
3n+m—1) m(2n+m 2) + (m) (n+m—3

19. B ~0.1003 20. {1—(z+ 22+ - +2%)}!

21.(i) zF+1(1 — )~ 2k-1 21.(ii) z™F (1 — )~ 21

22. [T (1 - &) ! 23. 27(1 — z)~5

24, gtm-D+1 (1 — g)-m-1
25. z8(1—2")(1 - 2'%)(1 - 2)% az= (- -C)
27.(ii) B(z)? 29.S,=1 31. 13" +1)

32. H{4" -3+ (-1)"hn21  33.%3) (6" +2°) 33.(ii) (6" -

4. L{5" =24 (=3) — 3 +2(-1) — (-5)"}
38.(i) 418 —4-31846.218 — 4 38.(ii) 45(410—4.310 4 6. 210
38.(iii) (410 —4-3104+6-210—4). (48— 4-38+6-25 — 4)

-1 ifr>1 z n
39. = 40. -1
{ 0 ifr=0 (e )
41. Ap(z) = ﬁ——l): 43.(a) n(n+1)---(n+r—1)

44.(3). 1 —z)™* 44.(ii) z*(1 —z)™*

293

")

-4)
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44.(iii) =* T2, (1 - =)~ 44.(iv) [T;, (1 - =)
46. z" [, (1 —2*)! 47. [T, (1 — )1
49.(i) 1+ )1+ )1+ =) .- = 11

49.(iii) Every natural number can be expressed uniquely as a sum
of some distinct powers of 2.

53. p(5,1) =1, p(5,2) = 2, p(5,3) =2, p(8,3) =

54.(i) p(5,3) =2, p(7,2) =3, p(8,3) =5

62.(a)(i) 8=6+1+1=5+2+1=44+3+1=4+4+24+2=3+3+2

62.(a)(i) (7,7,2), (7,6,3), (7,5,4), (6,6,4), (6,5,5)

62.(a)(iii) Yes, all equal to 5.

62.(b)(ii) z3{(1 — z)(1 — 2?)(1 — z3)}!

63.(1) 15=8+1+14+14+14+14+14+1=6+4+34+34+14+1+1
=5+4+4+34+2+1=4+4+443

63.(i1) 15 =15=114+3+1=94+5+1=7+5+3

m3

85 M=o 66.(1) A(z) = {[T;2, (1 - =*)}~!

k=

Exercise 6

l.a, =142 2. a, =(2-n)3"
3.an =2{1-(-3)"} 4. ap=(3n-1)2""2
5.a, =3+ 3(-1)"-§(3)" 6.ap=—-1+4+20-1.3"
7. an = 1(n +1)2" — L(2°+! + (-1)"5"+1)

8.an =(A+Bn+Cn?)(-1)"+D-2"

9.a, =(})""1(V3+6)—6

10.a¢,=3"t'-6-2"+2n+3  1l.a,=2n +n+1

_Jlrp +£—LM ifp#1 13. (L)r — (L)
12- dn {r+qn ifp=1 an = 3(5(2)" ~ (%)")
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14. a, = 102{1+(—1)n+12—2n} 16. a, = 22(1_21-—n)
17. an = 2(-3)" +n?+n+ } - 2n¥!
18. a, = (\/i)"(cos BT 4 sin 2F 19.a, = (n+ %n2)2"r
3(21-1) ifnisodd
21. a, =

(2 -1) ifniseven

20.a,=2"-2n-5

22. a, = —1+ 2" 4 n2nt1

23. an = —J(=2" + F(=-3)" + {n’ + i + 3
ﬂ‘__’l 1 —(r\n f -
24. a, = s+ p—r { (p)} lpy’:r 26. a, = 3"_
" {s+(t—s)n ifp=r n = Tqge-T
27. an = 35t} 28. 1

30. ap = 2ap_1 + 2453, @ = HBB(1 4 V) 4 =25(1 - /3y

s (@™t —q™t) ifp#g
32. a, = (P+ Q)an-l —Pqan-2, An =

(1 +n)p" ifp=gq
—(p)™+ .
L@ ifpg#1
33.a, = (pq + l)an—l — Pqn-2, Qn =
1+n ifpg=1

o (42 + (42

35. @n = @n_1 + 2an—2 With a; = 1 and ap = 3, a, = §(2*+! + (-1)")
37. a, = —(1+2n)2", b, = (5+ 2n)2"

38. a, = 2"(1 — 2n), b, = n2"+!

39. 4 = AL+ (B)"), by = —1+ (H?

40. 0 = 31+ (31}, b = HI- ()

41. 23 51. a, = F, 53. ap = apn_1 + an_2
54. F, 55. a, = ap_1+ apn_2, ap = F_1
56. Fp 3 58. Fy, = 17711

60. a, = a1an_1 + azan_3+---+an_101

61.(i) b1 =1, by=2, b3=5
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62. a, = ag@n_1 + a1@p_2+ - -+ an_1a9 for n > 2, where a9 = 1

2n+1 2 —
63. () 64 55(0) 65 B (A7)
66.(i) ay = l,az = 3, as = 13 68. an = mnl_-l-lj
69. (4" +2) 71.n=4,8,orn > 10

72. an = L{B+2-")? - 1)
74.a0=0,81 =2,a, = t(2n +5), n > 2

75 az, =0 \ 7 a, =1, forn>1 or
: 42n+1=m2%,+—15(:) "Van=1+(23)" forn>0
77.1991-998 + 2 80. f(z)=2z 81L.T,=n!4+2"

84. 2{2"2 4+ (—1)"+1}
n=3 . N
86. The required number is { 14 :1:3_ if n is odd
8373 ifniseven
88.a9=1,01 =3,a2 =9 and an41 = 3an + ap—1 +ap—2,n>2

90. (995,1), (176,10), (80,21)  93. Q(m,n) = (™"71) — (minTY)

[=]



Index

Addition Principle (AP) 1

Bell number 50, 180
bijection 27

Bijection Principle (BP) 27
Binet formula 237
binomial coefficient 70
Binomial Theorem 70

Catalan number 93, 259
Cauchy product 186
Chu Shih-Chieh’s Identity 78

clique 132
k- 132
monochromatic 142

combination 17
r- 17

convolution 186

derangement 160

Dirichlet Drawer Principle 120

distribution problem 208

equivalence class 49
equivalence relation 49
Euler ¢-function 166

Ferrers diagram 202
Durfee square of 221

Fibonacci numbers 237
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Fubini Principle 68

Fundamental Theorem of
Arithmetic 163

generating function 185
ordinary 185
exponential 204

golden number 278

injection 27
Injection Principle (IP) 27

mapping 27
bijective 27
increasing 89
injective 27
one-one 27
onto 27
surjective 27

multinomial coefficient 70, 99
Multinomial Theorem 98
Multiplication Principle (MP) 3
multi-set 34
multi-subset 37

partition 49

conjugate 202

of a positive integer 196
n- 49
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Pascal triangle 76

permutation 6, 34

circular 12
oscillating 262
r-circular 13

r- 6,34

Pigeonhole Principle (PP) 119
Generalized (GPP) 133

power set 28

Principle
Addition 1
Bijection 27
Fubini 68

Injection 27

of Complementation 16

of Inclusion and Exclusion 146
Multiplication 3

of Reflection 91

Pigeonhole 119

Principle of Complementation
(CP) 16

Principle of Inclusion and
Exclusion (PIE) 146
Generalized (GPIE) 150

problem of ménages 17

Ramsey number 129, 132

Index

Ramsey’s Theorem 132

recurrence relation 227
characteristic equation of 235
characteristic root of 235
homogeneous 234
initial conditions of 227
linear 234
rth order linear 241
rth order linear homogeneous

234

Reflection Principle (RP) 91
repetition number 34

sequence 4
binary 4
k-ary 4
quaternary 4
ternary 4

Sieve of Eratosthenes 163
Stirling numbers of the first kind
25
of the second kind 47
“surjection 27

triangulation of an n-gon P, 241
Tower of Hanoi 228

unimodal property 93



